本文ここから

Study on Proton Conductive Membrane with Nano-matrix Channel Prepared by Sulfonation of Natural Rubber Grafted with Polystyrene(ポリスチレンをグラフトした天然ゴムのスルホン化により調製されたナノマトリックスチャネルを有するプロトン伝導膜に関する研究)

氏名 Patjaree Suksawad
学位の種類 博士(工学)
学位記番号 博甲第564号
学位授与の日付 平成22年12月31日
学位論文題目 Study on Proton Conductive Membrane with Nano-matrix Channel Prepared by Sulfonation of Natural Rubber Grafted with Polystyrene (ポリスチレンをグラフトした天然ゴムのスルホン化により調製されたナノマトリックスチャネルを有するプロトン伝導膜に関する研究)
論文審査委員
 主査 准教授 河原 成元
 副査 教授 塩見 友雄
 副査 教授 五十野 善信
 副査 准教授 竹中 克彦
 副査 准教授 前川 博史

平成22(2010)年度博士論文題名一覧] [博士論文題名一覧]に戻る.

CHAPTER 1
General Introduction p.1
 1.1 Natural rubber mixture p.3
 1.2 Preparation of soft-materials with nanomatrix structure p.4
 1.3 Expected properties of soft-materials with nanomatrix structure p.5
 1.4 Continuous nanomatrix structure p.6
 1.5 Outline of this thesis p.7
 1.6 References p.10
CHAPTER 2
Nano-matrix-channel for Ionic Molecular Transportation p.12
 2.1 Introduction p.12
 2.2 Experimental p.15
 2.2.1 Materials p.15
 2.2.2 Deproteinization of natural Rubber p.15
 2.2.3 Graft-copolymerization p.16
 2.2.4 Ozonolysis p.16
 2.2.5 Sulfonation p.17
 2.2.6 Characterizations p.18
 2.3 Results and Discussion p.21
 2.4 Conclusion p.27
 2.5 References p.27
CHAPTER 3
Proton Exchange Membrane with Nanomatrix Channel Prepared by Solfonation of Natural Rubber Grafted with Polystyrene p.29
 3.1 Introduction p.29
 3.2 Experimental p.31
 3.2.1 Sulfonation p.31
 3.2.2 Characterization p.32
 3.3 Results and Discussion p.33
 3.3.1 Graft-copolymerization p.33
 3.3.2 Morphology p.34
 3.3.3 Molecular weight distribution for deproteinized natural rubber grafted with polystyrene p.36
 3.3.4 Characterization of sulfonation DPNR-graft-PS p.37
 3.3.5 DSC analysis p.44
 3.3.6 Elemental analysis p.46
 3.3.7 Electrochemical properties and water uptake content of membranes p.47
 3.3.8 Effect of solvent types for sulfonation p.52
 3.3.9 Mechanical properties of membranes p.54
 3.4 Conclusion p.56
 3.5 References p.57
CHAPTER 4
Sulfonation of Hydrogenated Natural Rubber Grafted with Polystyrene p.60
 4.1 Introduction p.60
 4.2 Experimental p.62
 4.2.1 Sulfonation p.62
 4.2.2 Sulfonation p.62
 4.2.3 Sulfonation p.63
 4.3 Results and Discussion p.63
 4.4 Conclusion p.73
 4.5 References p.73
CHAPTER 5
Sulfonation of Hydrogenated Natural Rubber Grafted with Polystyrene p.75
 5.1 Introduction p.75
 5.2 Experimental p.77
 5.2.1 Graft-copolymerization p.77
 5.2.2 Ozonolysis p.78
 5.2.3 Mastication p.78
 5.2.4 Characterization p.78
 5.3 Results and Discussion p.79
 5.3.1 Graft-copolymerization p.79
 5.3.2 Molecular weight of grafted polystyrene p.81
 5.3.3 Morphology p.82
 5.3.4 Mechanical properties of graft copolymer p.87
 5.4 Conclusion p.95
 5.5 References p.95
CHAPTER 6
Photo-reactive Nanomatrix Structure Formed by Graft-copolymerization of 1,9-Nonandiol Dimethacrylate onto Natural Rubber p.97
 6.1 Introduction p.97
 6.2 Experimental p.101
 6.2.1 Materials p.101
 6.2.2 Preparation of Inclusion Complex p.101
 6.2.3 Determination of Solubility Product p.102
 6.2.4 Graft-copolymerization p.102
 6.2.5 Characterization p.103
 6.3 Results and Discussion p.104
 6.3.1 Inclusion Complex Formation of NDMA and β-CD p.104
 6.3.2 Graft-copolymerization of Inclusion Complex onto DPNR Particle p.111
 6.4 Conclusion p.115
 6.5 References p.116
CHAPTER 6
Conclusion p.118
List of Publications and Presentations
Acknowledgements

 Mechanical and electrical properties of polymeric materials are controlled by morphology ofthe materials. Many efforts have been devoted to form nano-phase separated structures of block- and graft-copolymers, such as island-matrix, gyroid, cylinder and lamellar structures, in order tocontrol the properties. However, the nano-phase separated structures included serious problems ontheir alignments, which were attributed to grain-boundary. To solve this problem, recently, the nano-matrix structure was proposed as a novel phase-separated structure consisting of dispersoid of elastomer as a major component and matrix of functional polymer as a minor component.

 In the present study, novel functional soft-materials were prepared from natural rubber by forming the nano-matrix structure. The functional soft-materials with the nano-matrix structure were prepared by graft-copolymerization of vinyl monomers onto deproteinized natural rubber in latex stage. The continuous nano-matrix was formed to achieve high proton conductivity, and the incontinuous nano-matrix was applied to prepare thermoplastic elastomer. In order to accomplish high mechanical properties, the photoreactive carbon-carbon double bonds were introduced into thenano-matrix.

 Nano-matrix channel for ionic molecular transportation was formed by sulfonation of natural rubber grafted with polystyrene. First, deproteinized natural rubber-graft-polystyrene (DPNR-graft-PS) was prepared through graft copolymerization of styrene onto DPNR with tert-butyl hydroperoxide (TBHP) / tetraethylenepentamine (TEPA) as an initiator in latex stage. Second, the resulting DPNR-graft-PS is sulfonated with chlorosulfonic acid at 30 °C. The grafting efficiencyof styrene was found to be more than 80 mol% under prominent condition, i.e. 5.5 mol/kg-rubber ofstyrene and 20×10-5 mol/g-rubber of initiator concentration. Characterization of the resulting sulfonated DPNR-graft-PS was carried out by solid state 13C CP/MAS NMR spectroscopy and elementalanalysis. The nano-matrix channel is completely connected with each other in all directions, as observed by transmission electron microscopy. Dramatic increases in proton-conductivity and ion-exchange capacity of the membrane were attributed to the formation of the nano-matrix channel into the membrane.

 Polymer electrolyte membrane with nano-matrix channel was prepared by graft-copolymerization ofstyrene onto deproteinized natural rubber followed by sulfonation with chlorosulfonic acid. The grafted natural rubber (DPNR-graft-PS) was sulfonated with chlorosulfonic acid in chloroform solution at 30 °C. The proton-conductivity and mechanical properties of the sulfonated DPNR-graft-PS were investigated as a function of sulfur content. The resulting sulfonated DPNR-graft-PS was characterized by FT-IR spectroscopy, solid state 13C CP/MAS NMR spectroscopy, elemental analysis,and transmission electron microscopy. The high proton-conductivity, excellent stability and good mechanical properties were associated with not only the formation of the nano-matrix channel but also a specific concentration of sulfuric acid group.

 A stable proton conductive polymer electrolyte was prepared by hydrogenation of graft-copolymer(DPNR-graft-PS) with p-toluenesulfonylhydrazide in p-xylene solution, followed by sulfonation withchlorosulfonic acid in chloroform solution at 30 °C. The resulting sulfonated hydrogenated DPNR-graft-PS (SHDPNR-graft-PS) films were characterized by FT-IR spectroscopy, solid state 13C CP/MAS NMR spectroscopy and elemental analysis. It is evident that the cyclization of cis-1,4-isoprene units was prevented after hydrogenation. Ion exchange capacity (IEC) and proton conductivity (σ)of the SHDPNR-graft-PS were measured by titration method and impedance spectroscopy, respectively.Thermal behavior was studied by differential scanning calorimetry (DSC). Glass transition of the PS and tensile strength of the SHDPNR-graft-PS increased, which were dependent upon the sulfur content. The SHDPNR-graft-PS was found to be a rubbery proton conductive polymer electrolyte.

 Thermoplastic elastomer was prepared from deproteinized natural rubber (DPNR) by graft-copolymerization of styrene in latex stage with tert-butyl hydroperoxide/tetraethylenepentamine as an initiator. The resulting polystyrene, grafted onto the rubber particles, was characterized by sizeexclusion chromatography after ozonolysis. Morphology of the DPNR grafted with polystyrene (DPNR-graft-PS) was observed by transmission electron microscopy (TEM). Relationship between the morphology before and after mastication and the mechanical properties was investigated with respect to styrene unit content in graft-copolymer. The change in morphology after mastication ofthe DPNR-graft-PS at 150 °C was associated with change in mechanical properties. The outstandingmechanical properties were concerned with high conversion and high grafting efficiency.

 Formation of the photo-reactive particle was investigated by graft-copolymerization of 1,9-nonandiol dimethacrylate(NDMA) onto natural rubber particle in latex stage. First, an inclusion complex was prepared with NDMA and β-cyclodextrin (β-CD) to stabilize a carbon-carbondouble bond of NDMA. Second, the inclusion complex was graft-copolymerized onto natural rubber particle with potassium persulfate (KPS), tert-butyl hydroperoxide/tetraethylenepentamine (TBHPO/TEPA), cumene hydroperoxide /tetraethylenepentamine (CHPO/TEPA), and benzoyl peroxide (BPO) as an initiator. The resulting graft-copolymer was characterized by FT-IR, 1H-NMR and TEM to prove formation of nano-matrix structure having photoreactive group.

 本論文は、「Study on Proton Conductive Membrane with Nano-matrix Channel Prepared by Sulfonation of Natural Rubber Grafted with Polystyrene(ポリスチレンをグラフトした天然ゴムのスルホン化により調製されたナノマトリックスチャネルを有するプロトン伝導膜に関する研究)」と題し、7章より構成されている。

 第1章「総合序論」では、プロトン伝導性高分子電解質に関する従来の研究の概要を示すとともに、ナノ相分離構造の利用により生じる粒界(グレイン・バウンダリー)の問題とその解決策としてのナノマトリックス構造の可能性、本研究の目的と範囲を述べている。プロトンを輸送するための通路としてのナノマトリックスチャネルは、厚さ数~数十nmの高分子のマトリックスに直径約1μmのゴム状高分子が分散した新規ナノ相分離構造であることを定義し、3次元ナノネットワークとして大変形と回復における力学エネルギーの貯蔵と解放に寄与するだけでなく大量の情報を伝達する機能も有する可能性を述べている。 第2章では、プロトンを輸送するためのナノマトリックスチャネルの形成方法を述べている。天然ゴムをラテックスの状態で精製してからスチレンをグラフト共重合する第1のステップおよび製膜したフィルムをクロロフォルムに膨潤してからクロロスルホン酸を用いてスルホン化する第2のステップを述べている。また、生成物の解析方法を示している。 第3章では、天然ゴムを原料としてナノマトリックスチャネルを有するソフトマテリアルの合成における最適条件を決定している。ナノ相分離構造を制御することにより、プロトン伝導度を対応するホモポリマーの10倍に高くできることが示されている。

 第4章では、天然ゴムを原料とするときに生じる環化の問題を、スルホン化の前に水素化することにより解決できることを示している。 第5章では、ナノマトリックスチャネルの基礎となるナノマトリックス構造における加工性および力学物性を述べている。ナノマトリックス構造は、スチレン含有率が12%では素練りによって完全に破壊されるが、33%では素練りをしても破壊されないことを示している。

 第6章では、ナノマトリックスチャネルを構造固定するために、1,9-nonandiol dimethacrylateをモノマーとして光反応性ナノマトリックス構造の形成を述べている。

 第7章「総括」では、ナノマトリックスチャネルの力学物性とプロトン伝導性の向上に有効であることを総括している。

 以上より、本論文は工学上及び工業上貢献するところが大きく、博士(工学)の学位論文として十分な価値を有するものと認める。

平成22(2010)年度博士論文題名一覧

お気に入り

マイメニューの機能は、JavaScriptが無効なため使用できません。ご利用になるには、JavaScriptを有効にしてください。

ページの先頭へ戻る