Influence of mass and damping ratios on vortex induced vibrations of a cylinder in uniform flow (一様流中の円柱の過励振に及ぼす質量比と減衰比の影響)
氏名 NGUYEN TUAN ANH
学位の種類 博士(工学)
学位記番号 博甲第638号
学位授与の日付 平成24年9月30日
学位論文題目 Influence of mass and damping ratios on vortex induced vibrations of a cylinder in uniform flow (一様流中の円柱の過励振に及ぼす質量比と減衰比の影響)
論文審査委員
主査 教授 高橋 勉
副査 教授 増田 渉
副査 教授 金子 覚
副査 准教授 太田 浩之
副査 産学融合特任講師 山崎 渉
[平成24(2012)年度博士論文題名一覧] [博士論文題名一覧]に戻る.
CONTENTS
Abstract
Acknowledgement
Nomenclature
Chapter 1: Introduction p.1
1.1 BACKGROUND p.1
1.2 VORTEX-INDUCED VIBRATIONS(VIVS) AND RESERCH SO FAR p.3
1.2.1 Karman vortex-induced vibration (KVIV)
1.2.2 Longitudinal-vortex induced vibrations (LVIVs) in cruciform arrangement cylinder systems
1.3 OBJECTIVES OF STUDY p.28
Chapter 2: Theoretical Analysis p.29
2.1 SIMPLIFICATION AND ASSUMPTIONS p.29
2.1.1 Simplification of system and motion
2.1.2 Vortex force and additional mass, dumping.
2.1.3 Flow around oscillating cylinder (Synchronization phenomenon)
2.2 DIMENSIONAL ANALYSIS p.31
2.2.1 Dimensionless expression for vortex shedding from oscillating cylinder
2.2.2 Dimensionless parameters of VIVs
2.3 ANALYSIS BASED ON LINEAR VIBRATION THEORY p.37
2.3.1 Equation of Motion
2.3.2 Desynchronization prediction as a reference
2.3.3 Synchronization oscillation
2.4 SUMMARY OF CHAPTER 2 p.44
Chapter 3: Experimental Apparatus and Instrument p.45
3.1 APPARATUS p.45
3.1.1 Water tunnel system.
3.1.2 Cylinders, end plates and supporting structures
3.1.3 Virtual mass and virtual damping of spring-supported cylinder system
3.1.4 Magnetic damper
3.2 MEASUREMRENT INSTRUMENT
3.2.1 Laser displacement sensors
3.2.2 Flow meter
3.2.3 Hot film velocimeter
3.2.4 Lift force measurement
Chapter 4: Digital Signal Processing p.69
4.1 DATA ACQUIREMENT AND FILTERING PROCESSES p.69
4.2 HOW TO CORRECT THE PHASE SHIFTS p.72
4.3 HOW TO OBTAIN THE LIFT AND ITS PHASE p.75
4.4 SUMMARY OF CHAPTER 4 p.76
Chapter 5: Experimental Results p.77
5.1 VORTEX SHEDDING FROM FIXED SYSTEM p.77
5.1.1 Visualization of longitudinal vortices in air and water flows
5.1.2 Vortex configuration dominated by gap-to-diameter ratio
5.1.3 Relation between Strouhal number and Reynolds number
5.1.4 Fluctuating lift force loading on the upstream cylinder
5.1.5 Summary of Section 5.1
5.2 ADDITIONAL MASS AND DAMPING p.89
5.2.1 Fluid force obtained by excluding the cylinder inertia force
5.2.2 Additional mass and damping for an oscillating cylinder in fluid otherwise at rest.
5.2.3 Summary of Section 5.2
5.3 CHARACTERISTICS OF KARMAN VORTEX OBTAINED THROUGH CONTROLLED OSCILLATION EXPERIMENTS p.93
5.3.1 Case of varying oscillation frequency
5.3.2 Case of varying flow velocity
5.3.3 Case of varying oscillation amplitude
5.3.4 Synchronization conditions and threshold function for Karman vortex
5.3.5 Characteristics of lift generated by synchronizing vortex and vortex synchronization functions (VSFs) for Karman vortex.
5.3.6 Summary of Section 5.3
5.4 CHARACTERISTICS OF LONGITUDINAL VORTICES OBTAINED THROUGH CONTROLLED OSCILLATION EXPERIMENT
5.4.1 Trailing vortex (s/d=0.08)
5.4.1.1 Synchronization determination and threshold function for Trailing vortex
5.4.1.2 Characteristics of lift generated by synchronizing vortex and vortex synchronization functions (VSFs) of Trailing vortex.
5.4.2 Necklace vortex (s/d=0.3)
5.4.2.1 Synchronization determination and threshold function for Necklace vortex
5.4.2.2 Characteristics of lift generated by synchronizing vortex and vortex synchronization functions (VSFs) of Necklace vortex
5.4.3 Summary of Section 5.4
5.5 VIBRATION OF SPRING SUPPORTED SYSTEM p.137
5.5.1 Behavior of Karman vortex induced vibration
5.5.2 Behavior of Trailing vortex induced vibration
5.5.3 Behavior of Necklace vortex induced vibration
5.5.4 Behavior of the maximum response
5.5.5 The velocity range of VIVs
5.5.6 Summary of Section 5.5
Chapter 6: Discussions p.149
5.5 GENERAL FEATURES OF VIVS p.149
5.5 SIMPLIFIED OSCILLATOR MODEL p.152
5.5 COMPARISON WITH EXPERIMENTAL RESULTS p.157
5.5 SUMMARY OF CHAPTER 6 p.159
Chapter 7: Conclusions p.160
References p.165
In this thesis, behaviors of two longitudinal vortex-induced vibrations (LVIVs) in addition to the Karman vortex-induced vibration (KVIV) are investigated by theoretical and experimental approaches. A model is proposed to predict the vibration responses. The thesis includes seven chapters briefly presented as below.
- Chapter 1 “Introduction”: Former researches reported that two longitudinal vortices, i.e. the trailing and the necklace vortex, shedding from a cruciform two circular cylinder system also induce transverse vibrations on the upstream cylinder. They are named the trailing VIV (TVIV) and the necklace VIV (NVIV), respectively, and they are also called the longitudinal VIVs (LVIVs) collectively. Recent studies reported that the behavior of the KVIV in water flow is quite different from that in air flow due to large deviations of mass ratio MR and damping ratio ζbetween the two cases. While, only little is known on the behavior of the two LVIVs in water flow due to lack of experiment. From the viewpoint of engineering, it is an urgent need to develop method to predict the VIVs in both air and water flows in order to avoid hazardous oscillations for the structures. Hence, the influences of MR and ζ on the three VIVs are investigated by theoretical and experimental approaches.
- Chapter 2 “Theoretical Analysis”: In this chapter, the influences of MR and z on the VIVs are investigated based on the dimensional analysis and the linear vibration theory. The desynchronization prediction, i.e. when the feedback effect of the cylinder oscillation to the vortex force is neglected, indicates potential tendencies of the influence of MR and z. In addition to the threshold condition for the synchronization, the dimensional analysis also indicates that the feedback effect of the cylinder oscillation on the vortex force can be expressed by vortex-synchronization functions (VSFs). These functions coupled with others obtained from the equation of motion constitute an oscillator model for the synchronization prediction.
- Chapter 3 “Experimental Apparatus and Instrument”: Experiments are carried out in a high-velocity water tunnel thereby the Reynolds number range is comparable with the former wind tunnel experiment. A mechanical oscillator is built to oscillate the upstream cylinder harmonically at variable amplitude ZA or frequency fz. A force measuring meter is also developed to measure the transverse lift loading on the oscillating cylinder.
- Chapter 4 “Digital Signal Processing”: A software is developed in Labview 2009 to process the digital signal acquired from the instruments. The phase shift caused by the instruments for the force measurement is properly corrected, and the fluid force loading on the cylinder is obtained by subtracting the inertia force from the measured force.
- Chapter 5 “Experimental Results”: Experiments are carried out for fixed cruciform systems having various size, and then the vortex shedding features are compared with those in air flow to exam the universality of the two longitudinal vortices. The comparison shows a good agreement assuring the universality.
Controlled harmonic oscillation experiment is carried out to investigate the features of the three vortices shedding from an oscillating cylinder. Criteria for the synchronization are clarified based on the behaviors of the simultaneously measured parameters: the velocity at the reference position and the fluctuating lift. And then, the threshold condition for the synchronization and the VSFs are determined for the three vortices.
Experiments are carried out for spring supported systems having various values of MR and ζ but comparable Scruton number (Sc=4pMRζ). The vibration responses of the various systems are compared with each other in non-dimenisonal forms normalized by the desynchronization predictions. The results show that the influences of MR and ζare well described by referring the desynchronization prediction.
- Chapter 6 “Discussions”: A simplified oscillator model is proposed combing with the desynchronization prediction in order to predict the VIVs for the whole velocity range. Numerical calculation is implemented based on these predictions. The calculated vibrations responses are compared with the experimental data for the spring supported system. The comparisons show a good agreement for the KVIV, however, only fair agreements for the TVIV and the NVIV. In general, the influences of MR andζon the vibration response are well explained by the VIVs prediction.
- Chapter 7 “Conclusions”: The significant results of this thesis are concluded as below:
(1) The universality of the two longitudinal vortices and the occurrence of synchronization vibrations induced by them are assured.
(2) The synchronization is re-defined as a phenomenon of the vortex-shedding frequency coinciding with the oscillation frequency, and the phase shift of the lift relative to the oscillation amplitude remaining at a constant value.
(3) Predictions obtained by the proposed oscillator model reasonably agree with the experimental data for the three VIVs.
(4) At velocities other than the maximum oscillation amplitude, the mass ratio MR and the damping ratioζinfluence on the VIVs in separate manners.
本論文は、「Influence of mass and damping ratios on vortex induced vibrations of a cylinder in uniform flow(一様流中の円柱の渦励振に及ぼす質量比と減衰比の影響)」と題し、7章より構成されている。
第1章「Introduction」では、円柱後流に形成されるカルマン渦による振動現象、すなわちカルマン渦励振(KVIV)と、十字交差二円柱系で発生する二種類の縦渦励振(トレーリング渦励振TVIVとネックレス渦励振NVIV)に関する従来の研究の概要を示すとともに、本研究の目的と範囲を述べている。
第2章「Theoretical Analysis」 では円柱の振動に対して渦形成による力のフィードバック効果を無視できる状態、すなわち非同期状態に関して次元解析と線形振動理論に基づく考察により振動 挙動に及ぼす質量比と減衰比の影響が説明できることを明らかにしている。さらに、フィードバック効果が生じる同期状態については振動と渦流出の位相差を規定するVortex-Synchronization functions(VSF)を導入し、これと運動方程式を連結して振動挙動を予測するVSFオシレーターモデルを提案している。
第3章「Experimental Apparatus and Instrument」では本研究で使用した高速ウォータートンネル装置および新規に開発した流体力測定システムについて示している。
第4章「Digital Signal Processing」 では実験により計測される円柱の変位や円柱に作用する流体力を計測するセンサの出力信号に対して適用した補正や解析方法、解析ソフトウェアについて示している。
第5章「Experimental Results」では固定された円柱に関して円柱の寸法や周囲の流体が異なる条件下で得られた測定データを無次元化して比較し、各渦流出に伴う揚力変動などの挙動がSt数により整理されることを示している。次に、強制的に正弦振動をする円柱に対して周囲の流体から作用する流体力と円柱の振幅の測定結果をもとに、同期現象が発生するしきい条件および振動と流体力の位相差を表す関数(VSF)を3種類の渦励振に関して求めている。さらに、ばね支持された円柱を用いてそれぞれの渦励振現象に及ぼす質量比と減衰比の影響を実験的に求め、無次元数によりそれぞれの挙動の特徴を明らかにしている。
第6章「Discussions」では非同期状態に対する振動予測とVSFオシレーターモデルによる同期状態に対する予測を組み合わせることにより全速度域にわたる振動予測手法を提案している。計算により予測された振動挙動と実験結果を比較し、KVIVに関しては全般的に良く一致し、 TVIVとNVIVに関しても部分的には良く一致することを示している。これより本手法が同期状態に対しても質量比と減衰比の影響を説明することができることを示している。
第7章「Conclusions」では本論文により得られた知見を総括して示している。
よって、本論文は工学上及び工業上貢献するところが大きく、博士(工学)の学位論文として十分な価値を有するものと認める。