Application of optical instruments to surface topography measurement for analyzing geometrical transcription in ultrasonic vibration assisted grinding using diamond electroplated tool (ダイヤモンド電着工具による超音波援用研削の形状転写性解析を目的とした光学式表面トポグラフィ測定)
氏名 MOHD FAUZI BIN ISMAIL
学位の種類 博士(工学)
学位記番号 博甲第596号
学位授与の日付 平成23年8月31日
学位論文題目 Application of optical instruments to surface topography measurement for analyzing geometrical transcription in ultrasonic vibration assisted grinding using diamond electroplated tool (ダイヤモンド電着工具による超音波援用研削の形状転写性解析を目的とした光学式表面トポグラフィ測定)
論文審査委員
主査 教授 柳 和久
副査 教授 田辺 郁男
副査 教授 明田川 正人
副査 産学融合特任准教授 松丸 幸司
副査 准教授 磯部 浩已
副査 上智大学理工学部准教授 坂本 治久
[平成23(2011)年度博士論文題名一覧] [博士論文題名一覧]に戻る.
Chapter1 Introduction p.1
1.1 Research background p.1
1.1.1 Ultrasonic vibration assisted grinding using diamond electroplated tool p.1
1.1.2 Performance and topography of siamond abrasive tools p.3
1.2 Problem statement p.5
1.3 Goal and objective of study p.6
1.4 The scope of work and brief methodlogy p.6
Chapter2 Literature review and preliminary study p.9
2.1 Diamond abrasive tool topography p.9
2.1.1 Conditioning abrasiv wheel topography p.10
2.1.2 simulation on abrasiv wheel topography performance p.10
2.1.3 Causal effect of DET topography in UVAG p.12
2.2 Measurement of diamond abrasive tool p.12
2.2.1 Tactile method p.13
2.2.2 Non-contact method p.15
2.2.3 Indirect measurement method p.15
2.3 Management of erroneous component in surface topography data p.16
2.3.1 Surface filtering p.16
2.3.2 Outlines in optical type instrument data p.17
2.4 Characterization of abrasive tool topography p.19
2.4.1 Parameters for tool topography characterization p.19
2.4.2 Reference datum for abrasive tool topography data p.20
2.5 Characterization of ground surface p.23
2.6 Summy p.25
Chapter3 Methodology for samples and data preparation p.27
3.1 Experimental UVAG of steel for mirror finish using DET p.28
3.1.1 Materials and equipments p.28
3.1.2 UVAG grinding condition p.32
3.2 Characterization of ground surface p.34
3.2.1 UVAG ground surface characterization for process assessment p.34
3.2.2 UVAG ground surface characterization for process diagnostic p.35
3.3 Screening of characterization technology for DET p.36
3.3.1 Requirements of DET caharacterization p.36
3.3.2 Conditons for characterization technology selection p.36
3.4 Outliers correction procedure for areal topography data p.38
3.4.1 Outliers candidates' detection p.38
3.4.2 Verification of outliers p.43
3.5 Void data points replacement p.45
3.6 Surface filtering p.46
3.6.1 Median filter p.46
3.6.2 Gaussian filter p.46
3.7 Reversal method for reference datum extraction p.48
3.7.1 Cylindrical artefact p.48
3.7.2 The fixture p.48
3.7.3 Reversal method for datum of cylinder end topography p.49
3.7.4 DET reference datum p.51
Chapter4 Results and discussion p.53
4.1 Analysis result for UVAG ground surface p.53
4.1.1 Tool effect on the UVAG performance p.53
4.1.2 Ultrasonic vibration marks for active grains location identification p.56
4.1.3 Effect of active grain position on surface roughness p.59
4.1.4 Summary p.61
4.2 Effect of the outliers correction on topography data p.62
4.2.1 Comparison to typical filtering methods p.62
4.2.2 Application to several measuring systems p.63
4.2.3 Summary p.65
4.3 Selection of DET measuring instrument p.67
4.3.1 Assessment of data acquisition p.68
4.3.2 Assessment of pre-processed data p.68
4.3.3 Discussion p.72
4.3.4 Summary p.73
4.4 Effect of pre-processing procedure on DET topography data p.75
4.4.1 Appearance of DET topography data p.75
4.4.2 Effect of filtering procedure on grains peak identification p.77
4.4.3 Effect of pre-processed data p.79
4.4.4 Summary p.80
4.5 Grain height measurement for DET surface topography p.82
4.5.1 Grains identification based on motif analysis p.82
4.5.2 Active grains identification based on grains height measurement p.82
4.5.3 Estimation of erros due to the reversal method datum extraction p.85
4.5.4 Summary p.90
4.6 Additional UVAG test for single grain DET p.91
4.6.1 Characterization of single grain DET p.91
4.6.2 Summary p.98
Chapter5 Conclusion p.99
References p.102
Acknowledgement p.111
Application of diamond electroplated tool in ultrasonic vibration assisted grinding for mirror finish of steel surface was introduced to replace time consuming manual polishing for faster completion and better control of the geometrical errors in steel mould fabrication for plastic injection moulding. Despite of knowing the importance of cutting edge truncation as the main factor for obtaining mirror surface, the optimum condition for tool truncation process is remained unknown in relation to its grinding performance and the importance of the tool working surface integrity to the grinding results while there are inconsistency of the surface roughness within tools from the same batch and under identical machining conditions. On the other hand, the advancement in optical type surface topography measuring instruments enables faster measurement for larger area sampling with more flexibility may be useful for the tool topography measurement, but the outliers, noise and unknown reference datum in the topography data may lead wrong conclusion. Therefore, this research aimed to proposed measures in the application of optical instrument to surface topography measurement in order to identify the properties of diamond electroplated tool working surface topography which affect its performance in mirror finish of steel mold using ultrasonic vibration assisted grinding for better controllability of the grinding system.
In the 1st chapter [Introduction], the background of the application of diamond electroplated tool in ultrasonic vibration assisted grinding is presented and the problem statement is drafted together with the objectives of the study and the scope of work.
In the 2nd chapter [Literature review and preliminary study], previous study related to diamond abrasive tool topography and its performance is reviewed together with the measurement and characterization method. The necessity to develop new methodology and application to suit current application is realized. The application of reversal method for tool topography reference datum is proposed.
In the 3rd chapter [Methodology for samples and surface topography data preparation], the condition for the samples preparation of tool and work pairs through experimental ultrasonic vibration assisted grinding is explained while separate methodology of work surface characterization is proposed for grinding process assessment and process diagnostics. Then, methodologies for proposed measures to counter the problem arise in the application of optical instrument to diamond electroplated characterization are explained.
In the 4th chapter [Results and discussion], ground surface analysis for process assessment and tool-work interaction indentified the effect of the grain position estimated from the ultrasonic vibration marks to the surface roughness. Comparison between result from ground surface analysis and tool characterization is performed and the proposed tool characterization method is validated while the importance of multi active grains for mirror finishing is clarified. Additionally, the effect of data pre-processing and measurement error to the tool characterization is also discussed.
The 5th chapter [Conclusions] concludes important findings in this study and suggests the future task for application of the knowledge gained from this study.
This research proposed measures for the application of optical instruments to abrasive tool characterization for analyzing geometrical transcription in ultrasonic vibration assisted grinding using diamond electroplated tool. Useful information to increase the controllability of the grinding process or optimized tool design is gained. However, the accuracy of proposed tool characterization partly relies on the accuracy of the tool cylinder geometrical properties which can be distorted during the truncation or grinding process. Therefore, the development of stable tool design and truncation process is expected to utilize the proposed method for practical application.
本論文は、“Application of optical instruments to surface topography measurement for analyzing geometrical transcription in ultrasonic vibration assisted grinding using diamond electroplated tool”と題し、5章より構成されている。ダイヤモンド電着工具の砥粒形状と位置測定及びワークの表面性状評価を光学式測定機で行う場合に大きな問題となる測定異常値の処理とデータム面の同定について実用的な手法を提案し、超音波振動を重畳させた場合の工具とワーク表面の幾何学的な転写性についてその有用性を実証している。
第1章 “Introduction”では、高硬度金型材の鏡面加工をダイヤモンド電着工具による超音波援用研削で実現しようとする工学的背景を示し、本研究の範囲と目的を述べている。
第2章 “Literature review and preliminary study”では、超音波援用研削に関する従来の関連研究を系統的にまとめるとともに、ダイヤモンド砥粒の表面トポグラフィ測定が直面する問題点及び砥粒電着工具の加工性能を的確に評価する手法の必要性を提言している。
第3章 “Methodology for samples and surface topography data preparation”では、超音波援用研削後のワーク表面に転写した短波長成分の光学式測定技術を確立するとともに、砥粒電着工具の幾何学的性質を定量化するための測定機の選定及び測定条件の最適化を試みている。また、砥粒形状の測定データに含まれる異常値の補正法を新たに開発し、さらに、データム面の導入により砥粒の位置・高さ分布の定量化を実現している。
第4章 “Results and discussion”では、異なる工具とワークの組み合わせごとに超音波援用研削実験を行い、前章の測定及び評価法で求めた砥粒の幾何学的性質とワーク表面との相互作用を解析し、実砥粒の面内位置と高さ分布からワークの表面性状が推定できることを見出している。また、砥粒電着工具の設計指針を示唆するとともに、それに基づいて加工条件の最適化が可能となることを述べている。
第5章 “Conclusions”では、上記の各章で得られた知見を総合してまとめ、さらに本研究課題の今後の展開についても言及している。
以上のように、本論文で得られた知見は工学上貢献するところが多く、その成果は工業的有用性も高いことから、博士(工学)の学位論文として十分な価値を有するものと認める。