Study on calculation method of overcutting space and articulation angle during curved excavation by articulated shield (中折れシールド機における曲線掘進時余掘り量及び中折れ角の算定手法に関する研究)
氏名 陳 剣
学位の種類 博士(工学)
学位記番号 甲第488号
学位授与の日付 平成20年9月30日
学位論文題目 Study on calculation method of overcutting space and articulation angle during curved excavation by articulated shield (中折れシールド機における曲線掘進時余掘り量及び中折れ角の算定手法に関する研究)
論文審査委員
主査 教授 杉本 光隆
副査 教授 大塚 悟
副査 准教授 阿部 雅二朗
副査 准教授 豊田 浩史
副査 鉄道総合技術研究所 トンネル研究室室長 小島芳之
[平成20(2008)年度博士論文題名一覧] [博士論文題名一覧]に戻る.
Chapter 1 Introduction p.1
1.1 General p.1
1.2 Literature review p.2
1.2.1 Distribution of copy cutter length and tail void p.2
1.2.2 Direction control of shield machine p.3
1.3 Objective of this study p.5
1.4 organization of this research work p.5
Chapter 2 Mechanized shield tunneling work p.7
2.1 Shield tunneling works p.7
2.1.1 General aspect of shield tunneling method p.7
2.1.2 Shield tunneling machinery and applicable soil types p.8
2.1.3 Ground responses caused by shield tunneling p.10
2.2 Shield tunneling control system p.17
2.2.1 Control system for face stabilization p.18
2.2.2 Control system for computation amount of excavated soil volume p.23
2.2.3 Back filling control p.23
2.2.4 Tail sealed control p.24
2.2.5 Shield directional control system p.25
Chapter 3 Simplified calculation method of overcutting space by in-situ data p.28
3.1 Characteristics of in-situ data p.28
3.2 Analysis procedure p.29
3.2.1 Copy cutter length p.29
3.2.1.1 Extension / shrinkage angle p.29
3.2.1.2 Circumferential distribution of CC length p.30
3.2.1.3 Copy cutter length p.31
3.2.2 Thickness of tail void p.32
3.2.2.1 Relation of segment and initial excavation area p.32
3.2.2.2 thickness of tail void p.32
3.2.3 Volume of tail void p.34
3.2.3.1 Excavation area p.34
3.2.3.2 Volume ot tail void p.38
3.3 Analysis results and verification p.38
3.3.1 Assumptions in calculation p.38
3.3.2 Test site description p.39
3.3.3 Distribution of copy cutter length p.45
3.3.4 Distribution of tail void p.45
3.3.5 Relation among deviation of segment, deviation of cutter face and tail void p.46
3.3.5.1 Vertical deviation p.46
3.3.5.2 Horizontal deviation p.49
3.3.6 Theoretical volume of tail void p.50
3.3.6.1 Theoretical excavation volume, actual excavation volume, and mcking rate p.50
3.3.6.2 Theoretical volume of tail void, actual grouting volume, and grouting rate p.55
3.3 Summary p.61
Chapter 4 Distribution of overcutting space by Simulated Shield Behavior p.63
4.1 Analysis procedure p.63
4.2 Analysis results and verification p.64
4.2.1 Simulation results of shield behavior p.64
4.2.1.1 Trace of shield p.64
4.2.1.2 Shield behavior p.64
4.2.1.3 Force and moment p.64
4.2.2 Distribution of copy cutter length p.70
4.2.3 Vertical deviation of cutter face - segment p.71
4.2.4 Horizontal deviation of cutter face - segment p.72
4.2.5 Distribution of tail void p.75
4.3 Summary p.77
Chapter 5 Analysis of articulation angle and copy cutter length on 3-D tunnel alighment p.78
5.1 General p.78
5.2 Assumption p.78
5.3 Coordinate system p.80
5.3.1 Definition p.80
5.3.2 Coordinate transformation p.81
5.4 Tunnel alighment description p.81
5.4.1 Spatial curve p.81
5.4.2 Discretization and interpolation p.84
5.5 Articulation angle p.85
5.6 Classification of crease types p.89
5.6.1 Machine type p.89
5.6.2 Operation rules at curve p.92
5.6.3 Operation rules around BC p.92
5.6.4 Operation rules around EC p.92
5.7 Calculation method for articulation angle p.95
5.7.1 Type 1 p.95
5.7.2 Type 2 p.98
5.7.3 Type 3 p.100
5.8 Calculation method for copy cutter length p.101
5.9 Application on different tunnel alignments p.105
5.9.1 Machine type p.105
5.9.2 Alignment p.105
5.9.3 Type1: L1 is max p.108
5.9.3.1 Calculation results p.108
5.9.3.2 Examination p.109
5.9.4 Type2: LCSE is max p.111
5.9.4.1 Calculation results p.111
5.9.4.2 Examination p.111
5.9.5 Type3: L2 is max p.112
5.9.5.1 Calculation results p.112
5.9.5.2 Examination p.112
Chapter 6 Conclusions and recommendations p.131
6.1 Conclusions p.131
6.2 Recommendations for further studies p.132
REFERENCES p.133
APPENDIX A ALINGNMENT OF SHIELD TUNNEL p.136
A.1 Circular curve p.136
A.2 Transition curve p.137
A.2.1 Clothoid curve p.137
A.2.2 Parabolic curve p.140
Occurrences of overcutting area and tail void during shield tunneling are important factors to affect ground movement. Since overcutting area and tail void are hidden spaces behind shield and segment lings, it is difficult to measure them usually. To ascertain their distribution for process management of shield tunneling, a simplified calculation method was proposed. Performance of this method was verified also by apply it to a test site with in-situ measurement data. As results, the followings were made clear: 1)Distribution of overcutting area and tail void not only depends on status of copy cutter but also is influenced by rotation direction and speed of cutter space; 2)Tail void is proportional to positional deviation from segment ling to cutter face.
At the same time, the exhaustive simulation for shield behavior, i.e. , the position, the rotation angle, and the advance direction by kinematic shield model was executed to make up for the lack of measurement data. During simulation, the excavated area, the excavation rate, the tail clearance, the rotation direction of cutter face, the shield slide, and the dynamic equilibrium conditions are taken into account. Subsequently, the simulated results are applied in the proposed simplified method and distribution of overcutting area and tail void under different excavation rates were calculated again for more information. The final results were compared with the previous results by measurement data only.
The simplified method is suitable as an inspection method for distribution of overcutting area and tail void when excavation processes have been completed and measurement data have been obtained. However, determining excavation space in advance under the conditions of minimal excavated cross section and shield does not push the ground is required especially in sharply curved excavation. Nowadays, shields with articulation unit, named as articulated shield are popular for sharply curved excavation. In this thesis’s work, numerical procedures were proposed to determine the reasonable articulated angle, length and range of copy cutter under the predefined conditions of minimal excavated cross section and shield does not push the ground. At the same time, a FORTRAN program was developed to achieve these numerical procedures. With this program, optimal articulated angle, length and range of copy cutter, and tail clearance in 3D component alignment can be determined. In this program, 3 excavation types are classified depending on shield dimensions. For each excavation type, different rotation timings of shield in curve are considered. To verify the performance of this program, four test cases with simple curves are calculated firstly: the horizontal alignment with a circular curve, the vertical alignment with a circular curve, the horizontal curve with a circular curve and a clothoid curve, and the vertical curve with a circular curve and a parabolic curve. After verified the validity of this program, calculation for an actual shield tunneling project was executed. Based on the comparison of the calculated articulation angle and copy cutter length to the measurement data, some profitable conclusions were given.
In the last part of this thesis, prospects on future study of shield control were described.
本論文は、「中折れシールド機における曲線掘進時余掘り量及び中折れ角の算定手法に関する研究」と題し、5章より構成されている。
第1章「緒論」では、シールド機掘進時余掘り発生による地盤変位の推定及びシールド機姿勢制御技術に関する従来の研究の概要を示すとともに、本研究の目的と範囲を述べている。
第2章「シールド工法」は、トンネルを構築するシールド工法の一般的な施工手順から、シールドの姿勢と掘進方向制御システムの研究開発の現状などを説明している。
第3章「現場計測データを用いた余掘り量の算定手法」は、余掘り量を推定する方法を確立することを目的として、曲線部の余掘り分布の簡易算定する手法を開発するとともに、その手法を現場計測データに適用して、本手法の合理性を検討した。その結果、(1)余掘り量の分布はカッターフェイス回転方向、カッターフェイス回転速度によって異なること、(2)「カッターフェイス-セグメント偏差」を用いることにより、テールボイド厚さ分布を推定できることが明らかとなった。
第4章「シミュレーションデータを用いた余掘り量の算定手法」では、第3章で開発した手法を拡張して、シールド挙動シミュレーションを用いて、経時的なシールド位置を推定することにより、任意の位置でのテールボイドの厚さ分布を算定する手法を提案し、さらに、シミュレーションで得られた掘削有効率による余掘り量分布への影響を検討している。
第5章「複合線形における中折れ角及び余掘り量の算定手法」では、中折れシールド機が平面・縦断線形が複合するトンネルを掘進する時に、(1)曲線外側のコピーカッター使用量を最小にする、(2)シールドスキンプレートが地盤を押し込まないという制約条件の元で、中折れ角とコピーカッター余掘り量を算定する手法を開発し、幾何学的にその妥当性を検証している。
以上、これらの算定手法により、実現場の余掘り量の検査確認、及び、今までできなかったトンネル複合線形におけるシールド機中折れ角、コピーカッターの長さの選定が可能となる。
以上のように、本研究の成果は、シールド工法における高い精度の施工を可能ならしむるものであり、シールド機自動制御への道を開くものである。よって、本論文は、工学上および工業上貢献するところが大きく、博士(工学)の学位論文として十分な価値を有するものと認められる。