Molecularly imprinted polymer materials prepared under supercritical CO2 fluid (超臨界CO2 を利用した分子インプリントポリマー材料)
氏名 張 泉秋
学位の種類 博士(工学)
学位記番号 博甲第504号
学位授与の日付 平成21年3月25日
学位論文題目 Molecularly imprinted polymer materials prepared under supercritical CO2 fluid (超臨界CO2 を利用した分子インプリントポリマー材料)
論文審査委員
主査 教授 小林 高臣
副査 教授 野坂 芳雄
副査 教授 梅田 実
副査 産学融合特任講師 于 海峰
副査 長岡工業高等専門学校教授 丸山 一典
[平成20(2008)年度博士論文題名一覧] [博士論文題名一覧]に戻る.
Contents
abbreviation list
Chapter 1. General Introduction p.1
1.1 Molecularly imprinting p.1
1.1.1 Molecularly imprinting p.1
1.1.2 Molecularly imprinted membrane p.4
1.2 Application of supercritical CO2 in formation of molecularly imprinted membrane p.8
1.2.1 supercritical CO2 p.8
1.2.2 Application of supercritical CO2 on membrane formation p.10
1.2.3 Application of supercritical CO2 on molecularly imprinted membranes p.13
1.3 Crystal formation on the surface of imprinted membrane induced by imprinting effect p.15
1.4 Uracil targets by imprinting p.17
1.5 Outline of this thesis p.20
1.6 References p.20
Chapter 2. Characterization of Uracil imprinted membrane prepared under CO2 fluid p.24
2.1 Introduction p.25
2.2 Experimental p.28
2.2.1 Materials p.28
2.2.2 Preparation of membrane materials p.30
2.2.3 Preparation of imprinted and non-imprinted membrane p.30
2.2.4 Batch binding of substrate to imprinted membranes p.33
2.3 Results and discussion p.34
2.3.1 Characteristics of imprinted membranes p.34
2.3.2 Binding to URA and various substrates to the imprinted membranes p.38
2.4 Conclusion p.45
2.5 References p.46
Chapter 3. Effect of supercritical CO2 on properties of uracil imprinted polymer membranes prepared with phase separation p.48
3.1 Introduction p.48
3.2 Experimental p.51
3.2.1 Materials p.51
3.2.2 Preparation of imprinted membrane in SC CO2 p.51
3.2.3. Characterization of membrane p.52
3.2.4 Binding of substrate to imprinted membranes p.52
3.3 Results and discussion p.53
3.3.1 Characteristics of imprinted and non-imprinted membranes p.53
3.3.1.1 Effect of pressure on membrane structure p.53
3.3.1.2 Effect of solvent on membrane structure p.56
3.3.1.3 Effect of the nonsolvent on the membrane structure p.60
3.3.1.4 Effect of the temperature on the structure of membrane p.62
3.3.2 Imprinted ability to the imprinted membranes p.64
3.3.2.1 Binding to URA of the imprinted membranes p.64
3.3.2.2 Recognition of URA and other analogs by imprinted membrane p.66
3.4 Conclusion p.69
3.5 References p.72
Chapter 4. Using polystyrene-co-maleic acid molecularly imprinted membrane in supercritical CO2 p.74
4.1 Introduction p.74
4.2 Experimental p.78
4.2.1 Materials p.78
4.2.2 Preparation of imprinted membrane in SC CO2 p.78
4.2.3 Membrane characterization p.82
4.2.4 Binding experiment p.82
4.3 Results and discussion p.83
4.3.1 Characteristics of imprinted membranes p.84
4.3.2 Morphology characterization of URA imprinted membranes p.90
4.3.3 Substrate uptake for URA imprinted membrane p.94
4.3.4 Separation of URA and other analogs by URA imprinted membranes p.102
4.4 Conclusion p.107
4.5 References p.107
Chapter 5. Crystallization of uracil molecule on surface of imprinted membranes p.110
5.1 Introduction p.110
5.2 Experimental p.113
5.2.1 Materials p.113
5.2.2 Preparation of imprinted membranes p.115
5.2.3 Crystallization process induced by imprinting effect p.115
5.3 Results and discussion p.116
5.3.1 Observation of crystal formed on membrane surface by SEM p.116
5.3.2 Role of imprinting condition in SC CO2 on the induced crystallization p.121
5.4 Conclusion p.128
5.5 References p.128
Chapter 6. Summary p.130
List of publications p.132
Presentations on conferences and symposiums p.134
Molecular imprinting is an effective means of encoding information of molecular shapes and molecular functions into materials on its scale.
The attempt to introduce specific recognition sites in synthetic polymer membrane is considered as a new approach for developing imprinting materials with novel functionality. Increasing the recognition ability of the imprinted materials has been to be one object for molecularly imprinting. Recently, there are experimental events that compressed fluid is widely used for polymer processing. For example, the method of compressed fluid used as anti-solvet(PCA)was applied to prepare architecture of polymer materials having microspheres, porous fibers and porous foams. Since compressed CO2 has been successfully applied in preparation of porous membrane, it was been expected to extend for preparation of molecularly imprinted membrane having high recognition ability. In the present work, I selected CO2 fluid instead of water as non-solvent in order to prepare porous imprinted membrane by phase inversion method. Since unacil(URA)is one of four components of RNA containing units of a heterocyclic nucleotide base, it is very interesting to study URA attracted by imprinting. This is because of more interesting in their biochemical importance and applications. URA molecule was imprinted into poly (acrylonitrile-co-methylacrylic acid) membrane by phase inversion process using PCA. The binding ability of resultant membrane was confirmed by batch experiments. The resultant imprinted membranes obtained showed highly selective binding to URA with 12.8 μmol/g, but less binding to its analogs such as dimethyluracil, thymine and cytosine with 0.7, 0.8 and 0.9μmol/g, respectively. Competitive binding studies were carried out in binary mixtures of URA and its analogs in order to check the recognition ability of the resultant membrane. Evidence was presented that the compressed CO2 fluid contributed efficient formation of the template sites in the URA imprinted membrane.
Since compressed CO2 was proved to be efficient for URA imprinting, such method was extended to supercritical CO2 for the effect of CO2 such as pressure and temperature on the membrane property. In the same way, preparation of URA molecularly imprinted membrane was extended to supercritical CO2 with poly (styrene-co-maleic acid). The results of experiment presented that supercritical CO2 fluid was efficient to fix the shape of URA template into the membrane through hydrogen bonding between the polymer and template.
As an application, directly crystallization of URA on the surface of imprinted membrane was also performed. The SEM measurement showed that the crystal formed on the imprinted membrane surface showed flower-like morphology. However, non-imprinted membrane had no crystals formation. Evidence was shown that supercritical CO2 media was important in formation of the URA crystals on the imprinted membrane surface.
本論文は「Molecularly Imprinted Polymer Materials Under Supercritical CO2 Fluid (超臨界CO2を利用した分子インプリントポリマー材料)」と題し、全6章から構成されており、超臨界CO2を利用した分子インプリントポリマー材料創成を提唱し、新たな手法を開発して、作製した分子認識分離膜の分子認識特性ならびに吸着性能について研究している。
第1章「General Introduction」では、分子インプリント法について概説し、特に、相転換分子インプリント法について言及し、この非溶媒として超臨界二酸化炭素媒体 を利用する利点について述べている。これまでのこの分野の経緯とあわせて、超臨界CO2系での新規性とその技術的位置づけについて解説し、本論文の目的を述べている。
第2章「Characterization of Uracil imprinted membrane prepared under CO2 fluid」では、Uracil (URA)に対して分子認識・吸着特性を研究している。特に、カルボキシル基をもつアクリロニトリル共重合体を合成し、膜状の分子インプリントポリマー(MIP)をCO2媒体内で作製し、得られたその膜特性ならびにその基質選択性と吸着特性について述べている。
第3章「Effect of supercritical CO2 on properties of uracil imprinted polymer membranes prepared with phase separation」では、様々な圧力、温度のもと調整した超臨界CO2媒体内で、URAを刷り込んだMIP材料を作製し、これらの膜材の基質選択性と吸着特性を調べている。これにより、超臨界媒体の圧力増加と温度の低下が基質認識性に影響が有る事を見いだしている。比較として、水媒体で調整したMIPの特性をCO2媒体の結果と比較しており、超臨界二酸化炭素媒体を利用する方法の優位性について説明している。
第4章「Using polystyrene-co-maleic acid molecularly imprinted membranes prepared in supercritical CO2」では、URAをインプリントするための ポリスチレンーマレイン酸共重合体を合成し、超臨界CO2媒体での相転換にて分離膜を作製した。URA-ジメチルURA、URA-チミン、URA-シトシンの二成分系で分離実験を行ない、URAインプリント膜は優れた分離膜である事を述べている。
第5章では、「Crystallization of uracil molecule on surface of imprinted membranes」では、URAを超臨界場でインプリントした膜は、その高い選択的基質濃縮作用により、膜表面での基質濃度が高くなる事で、基質の結晶化が優先して生じる事を初めて見出し、分子インプリント膜の新たな応用アプローチを提案している。
第6章では、本論文で得られた結果と考察を要約している。
以上の内容より、本論文は工学上および工業上貢献するところが大きく、博士(工学)の学位論文として十分な価値を有するものと認める。