本文ここから

Improvement of asphalt mixture design procedures and performance evaluation methods on Indonesian wearing course mixture(インドネシアで使用されている表層用アスファルト混合物の配合設計法と供用性評価法の合理化)

氏名 Iman Haryanto
学位の種類 博士(工学)
学位記番号 博甲第428号
学位授与の日付 平成19年6月30日
学位論文題目 Improvement of asphalt mixture design procedures and performance evaluation methods on Indonesian wearing course mixture (インドネシアで使用されている表層用アスファルト混合物の配合設計法と供用性評価法の合理化)
論文審査委員
 主査 准教授 高橋 修
 副査 教授 丸山 暉彦
 副査 准教授 宮木 康幸
 副査 准教授 下村 匠
 副査 苫小牧工業高等専門学校教授 吉田 隆輝

平成19(2007)年度博士論文題名一覧] [博士論文題名一覧]に戻る.

Contents
Title page p.i
Acknowledgement p.ii
Abstract p.iv
Contents p.viii
List of Tables p.xv
List of Figures p.xvii

Chapter1
Introduction p.1
 1.1 Background p.2
 1.2 Objective of research p.3
 1.3 Organization of thesis p.4
 1.4 Scope p.7
 1.5 Benefits p.7
 References p.8

Chapter2
Review and Discussion on The Current Mixture Design Procedures and Specification of IWCM p.12
 2.1 Review on the current mixture design procedures and specifications of IWCM p.13
 2.2 Characteristics of tire-pavement contact to improve the specifications of IWCM p.18
 2.2.1 Pavement loading conditions p.18
 2.2.2 Interaction between pneumatic tire and pavement p.19
 2.3 Research areas p.22
 2.4 Summary p.23
 References p.24

Chapter3
Improvement of Aggregate Gradation Design and Evaluation of IWCM p.27
 3.1 Introduction p.28
 3.2 Literature review p.29
 3.3 Development of criteria for aggregates skeleton and packing p.32
 3.3.1 Development of classification criteria of skeleton structure type for wearing course mixture p.32
 3.3.2 Development of quality evaluation criteria of aggregate packing for wearing course mixture p.35
 3.4 Experimental work for evaluation of the criteria p.37
 3.4.1 Material sources p.37
 3.4.2 Design of aggregate gradation p.37
 3.4.3 Mix design procedure p.38
 3.5 Results and discussion p.39
 3.5.1 Result of mix design p.39
 3.5.2 Analysis of aggregate packing p.42
 3.5.3 Evaluation of asphalt mixture by WTT p.43
 3.6 Summary p.46
 References p.47

Chapter 4
Development of the Structure Models of Aggregate Gradation Design ofIWCM p.50
 4.1 Introduction p.51
 4.2 Literature review p.53
 4.3 Experimental work p.57
 4.3.1 Preparation of HMA materials, design of aggregate blending and the mixture design results p.57
 4.3.2 Methods of UCT and the data process p.58
 4.3.3 Analysis of correlation p.61
 4.4 Data analysis and discussion p.62
 4.4.1 Analysis of the dilatancy properties p.62
 4.4.2 Porosities and DS values p.63
 4.4.3 Development of spherical aggregates assembly models for the assessment of dilatancy and rutting of HMA Mixture p.63
 4.4.4 Comparison between dilatancy and DS properties p.68
 4.5 Summary p.71
 Reference p.72

Chapter 5
Use of Compression Test and Indirect Tensile Test for Rutting Potential Assessment of IWCM p.75
 5.1 Introduction p.76
 5.2 Literature review p.77
 5.3 Experimental work p.78
 5.3.1 Preparation of HMA materials, design of aggregate blending and the mixture design results p.78
 5.3.2 Test methods and data process of ITT p.78
 5.3.3 Data process of UCT to obtain Gs p.80
 5.4 Data analysis and discussion p.82
 5.5 summary p.85
 References p.86

Chapter 6
Use of Spherical Aggregates Assembly Models for Qualitatively Depicting the Mohr-Coulomb Shear Strength Properties of IWCM p.89
 6.1 Introduction p.90
 6.2 Literature review p.91
 6.3 Experimental work p.94
 6.3.1 Preparation of HMA materials, design of aggregate blending and the mixture design results p.94
 6.3.2 Test methods of UCT and ITT for measuring C and Φ p.95
 6.3.3 Data process p.95
 6.4 Results and discussion p.95
 6.4.1 Analysis of C and Φ properties of HMA p.95
 6.4.2 Use of frictional laws for qualitatively depicting rutting behavior of HMA mixture p.98
 6.5 Summary p.101
 References p.101

Chapter 7
Ductile Fracture Assessment of IWCM Using Critical J Integral and Crack tip opening Angle p.104
 7.1 Introduction p.105
 7.2 Literature review p.106
 7.2.1 Fracture mechanics for delaying fracture in HMA mixture p.106
 7.2.2 The role of aggregates for delaying fracture in HMA mixture p.108
 7.3 Experimental work p.110
 7.3.1 Preparation of HMA materials, design of aggregate blending and the mixture design results p.110
 7.3.2 Aggregate skeleton types of HMA mixture p.110
 7.3.3 Method of the notched SCB beam test p.111
 7.3.4 Deta process for the notched SCB beam test p.113
 7.3.4.1 Calculation of Jc p.113
 7.3.4.2 Calculation of CTOA p.114
 7.4 Data analysis and discussion p.117
 7.4.1 Test results and discussion of Jc p.117
 7.4.2 Test results and discussion of CTOA p.120
 7.4.3 Comparison between of Jc and CTOA p.124
 7.4.4 Potential practical use of CTOA p.125
 7.5 Summary p.126
 References p.127

Chapter 8
Criteria for Stable Aggregate Grandation Structure of IWCM p.132
 8.1 Introduction p.133
 8.2 Literature review p.134
 8.3 Concept of backbone aggregates porosity p.136
 8.4 Experimental work p.137
 8.4.1 Preparation of HMA materials, design of aggregate blending and the mixture design results p.137
 8.4.2 Test methods and data process of WTT and SCB beam test p.137
 8.5 Evaluation properties of aggregate gradations structure p.137
 8.6 Summary p.140
 References p.142

Chapter 9
Development of Simple Stability Index of HMA Mixture p.144
 9.1 Introduction p.145
 9.2 Literature review p.146
 9.3 Development of SI of HMA mixture p.148
 9.4 Experimental work p.151
 9.4.1 Preparation of HMA materials, design of aggregate blending and the mixture design results p.151
 9.4.2 Test methods and data process of UCT, ITT and WTT p.152
 9.5 Data evaluation p.152
 9.6 Summary p.153
 References p.153

Chapter 10
Development of Cracking Resiatnace Index and Workability Index of HMA Mixture p.156
 10.1 Introduction p.157
 10.2 A parameter representing interlocking aggregates within HMA mixture p.159
 10.3 Development of cracking resistance index of HMA mixture p.162
 10.4 Decelopment of workability index of HMA mixture p.164
 10.5 Experimental work p.165
 10.5.1 Preparation of HMA materials, design of aggregate blending and the mixture design results p.165
 10.5.2 Specimens preparation, test methods and data process of the notched SCB beam test p.167
 10.6 Tests results and evaluation p.167
 10.6.1 Test results of the notched SCB beam test and evaluation of relationship between VCI versus Jc p.167
 10.6.2 Calculation results and discussion of WI p.168
 10.7 Summary p.170
 References p.170

Chapter 11
Conclusion and Recommendation p.174
 11.1 Conclusion p.175
 11.2 Recommendation p.177
 References p.178

 The current specification of Indonesian wearing course mixtures (IWCM) aims to decrease serious rutting and cracking potential of asphalt mixtures. However, mixture design procedures in the specification exclude rational tests for rutting and cracking assessments. Furthermore, the specification has no guidance to decide a proper aggregate gradation. The present study discusses improvement of the specification of IWCM. The improvement involves the simple rational evaluation tests for rutting and cracking potential and the guidance to select a proper aggregate gradation for IWCM. This thesis is divided into eleven chapters and organized as follows.
 Chapter 1 explains the background, objective, thesis organization, scope and potential benefit of the present study.
 Chapter 2 reviews and discusses the current design procedures and the specifications of IWCM. The current specifications of IWCM, which uses the volumetric properties and the Marshall properties, cannot illustrate the rutting potential and the cracking potential subjected to tire stresses. In order to overcome these deficiencies, the current design method should have simple performance test, simple performance indices and a systematical guidance for aggregate gradation.
 Chapter 3 presents improvement on the aggregate gradation design of IWCM. Tentative criteria for grouping of asphalt mixtures are proposed on the basis of aggregate skeleton type, particles contact and packing degree. IWCM of which the aggregate gradation passes under the restricted zone can be designed either as stone mastic asphalt (SMA) stone skeleton or coarse graded stone-sand skeleton. On the other hand, IWCM of which the aggregate gradation passes above the restricted zone can be designed either coarse graded sand-stone skeleton or fine graded sand-stone skeleton. This chapter proposes that the control point for sieve size of 2.36 mm can be extend from 28 % - 58 % to 25 % - 66 %.
 Chapter 4 develops structure models of aggregate gradation for IWCM. Seven spheres assembly models of aggregate structure are introduced. The properties of dilatancy rate and shear strain evaluate validity of the proposed sphere assembly models for describing the aggregate structure of IWCM. Deformation tendencies of the spheres assembly models are compared with the grades of rutting resistance of the HMA mixtures using dynamic stability (DS) obtained from wheel tracking test (WTT). This chapter confirms that shear strain reduces with increasing dilatancy rate. However, dilatancy rate is not sufficient to illustrate rutting resistance, i.e. DS, of IWCM.
 Chapter 5 presents the use of unconfined compression test (UCT) and indirect tensile test (ITT) for assessing rutting potential of IWCM. A property of secant shear modulus (Gs) can rank the laboratory rutting performance as well as DS. A relationship between Gs and DS suggests that over 28 MPa in Gs is equivalent to more than 800 cycles/mm in DS, within the scope of materials sources used in the present study. Gs can be one of rutting potential indicators for IWCM. On the other hand, a coefficient of determination between tensile strength and DS is much lower than that between Gs and DS.
 Chapter 6 discusses the use of sphere assembly models for analyzing Mohr-Coulomb shear strength properties, which include cohesion (C) and internal friction angle (φ). The fundamental laws of bias and un-bias friction are applied to qualitatively estimate the frictional characteristics of φ and DS.
 Chapter 7 presents the use of the critical J integral (Jc) and the crack tip opening angle (CTOA) to evaluate ductile fracture properties of IWCM. The notched semi circular bending (SCB) beam test is employed to determine these values. The test results show that the values of Jc and CTOA vary within the ranges of 0.13-0.76 kJm-2 and 0.0o-8.07o, respectively. Jc and CTOA are useful to comprehensively evaluate the ductile fracture properties of IWCM.
 Chapter 8 introduces a new procedure for selecting a proper aggregate gradation having adequate rutting and cracking resistance. The procedure combines the Bailey ratios criteria and a property of porosity (n). The evaluation result indicates that having the stone fraction ≦ 30 %, the n value ≦ 50 %, satisfying the Bailey ratios criteria and the coarse aggregate ratio (CA) ≦ 0.55 are suitable to indicate a stable aggregate gradation structure. This procedure does not require any laboratory tests.
 Chapter 9 develops a stability index (SI) of IWCM based on the Mohr-Coulomb theory. A loose granular blend illustrates the weakest interlocking states of aggregate particles. In the case of loose granular blends, which can be defined as n ≦ 50 %, the correlation between SI and DS is sufficient. The index can be an alternative parameter for indicating rutting resistance of HMA mixtures.
 Chapter 10 develops a cracking resistance index (VCI) and a workability index (WI) of HMA mixtures applying a concept of interlocking aggregates, which is introduced by tribologists. A relationship between VCI and Jc is sufficient. VCI can be an alternative parameter for indicating cracking resistance of IWCM. WI can be easily determined using either a Marshall compactor or a steel roller compactor. The WI value of HMA mixtures was low, when the HMA mixture has a much fraction of stone or sand. Compaction works increase an interlocking effect, and the aggregates don't easily move within HMA mixtures. The WI value might be high, when the aggregate gradation of the HMA mixture stays slightly above the Fuller curve. Sand particles within the aggregate gradation eliminate contacts among stone particles, so the stone particles easily shift with compaction.
 Chapter 11 summarizes the conclusions and the future works of the present study.The present study shows that only the volumetric and the empirical properties currently used in the specification do not guarantee an excellent performance of IWCM. The current specification warrants that rutting and/or cracking will not be prematurely taking place in Indonesian wearing courses. The present study proposes a new design procedure of IWCM. The procedure involves the evaluations of the Bailey criteria, aggregates skeleton type and porosity for selection of aggregate gradation, and uses the UCT and the notched SCB beam test for assessing Gs, and Jc.

 本論文は「Improvement of asphalt mixture design procedures and performance evaluation methods on Indonesian wearing course mixture」と題し,11章より構成されている。
 第1章では,本研究の背景と目的を説明し,研究の意義と適用範囲を明らかにしている。
 第2章では,表層用アスファルト混合物についてのインドネシアでの配合設計手順と設計仕様について述べており,わだち掘れとひび割れに対する抵抗性を保証するためには,シンプルな供用性評価法と適当な骨材配合を選定するための系統的ガイドラインが設計法に必要であることを強調している。
 第3章では,骨材の骨格構造,骨材粒子の接触状況,および骨材の充填状況に基づいて,アスファルト混合物をグループ分けするための規準を策定している。
 第4章では,インドネシアの表層用アスファルト混合物を7種類の円形粒子集合体でモデル化し,ダイレイタンシー特性とアスコンの流動抵抗性の相関について検討している。その結果,ダイレイタンシー率が大きくなるとせん断ひずみは小さくなることが確認された。
 第5章では,表層用アスファルト混合物の塑性流動性を評価するための試験として,一軸圧縮試験と間接引張試験の適用性について検討し,割線せん断係数は流動抵抗性と相関が高く,わだち掘れの評価に有効であることを確認している。
 第6章では,円形粒子集合体モデルを用いてMohr-Coulombのせん断強度特性値,すなわち粘着力およびと内部摩擦角と流動抵抗性の相関について検討している。
 第7章では,表層用アスファルト混合物の延性破壊特性を評価するための指標として,臨界J積分とひび割れ先端開き角を導入し,これらの有効性を示している。
 第8章では,十分な流動抵抗性とひび割れ抵抗を有する適切な骨材粒度を選定するための手順を提案している。この手法はBailey比の規準値と多孔率を組み合わせたものであり,特に室内評価試験等を必要としない。
 第9章では,Mohr-Coulomb理論に基づく表層用アスファルト混合物の安定度指数を開発し,この指標は混合物の流動抵抗性を表現できることを示している。
 第10章では,アスファルト混合物中の骨材のインターロッキングを評価するために,トライボロジーの考え方を導入したひび割れ抵抗指数とワーカビリティ指数を開発している。
 第11章では,結論として本研究で得られた知見と今後の課題について取りまとめている。よって,本論文は工学上及び工業上貢献するところが大きく,博士(工学)の学位論文として十分な価値を有するものと認める。

平成19(2007)年度博士論文題名一覧

お気に入り

マイメニューの機能は、JavaScriptが無効なため使用できません。ご利用になるには、JavaScriptを有効にしてください。

ページの先頭へ戻る