Fatigue behavior of magnesium alloys under ambient and corrosive environment(マグネシウム合金の通常及び腐食環境下の疲労挙動)
氏名 Sabrina Alam Khan
学位の種類 博士(工学)
学位記番号 博甲第433号
学位授与の日付 平成19年8月31日
学位論文題目 Fatigue behavior of magnesium alloys under ambient and corrosive environment (マグネシウム合金の通常及び腐食環境下の疲労挙動)
論文審査委員
主査 教授 武藤 睦治
副査 教授 岡崎 正和
副査 准教授 井原 郁夫
副査 准教授 西村 太志
副査 実務家教授 永田 晃則
副査 長岡工業高等専門学校機械工学科准教授 宮下 幸雄
[平成19(2007)年度博士論文題名一覧] [博士論文題名一覧]に戻る.
Table of Contents
Chapter 1. Introduction
1.1 Background p.1-1
1.2 Mechanical rpoperties of Mg alloy p.1-1
1.3 Corrosion properties p.1-2
1.4 Advantages, disadvantaages of Mg alloys p.1-4
1.5 Applications of Mg alloys p.1-5
1.6 Fatigue behavior of Mg alloys
1.6.1 Mechanism of fatigue crack anitiation p.1-6
1.6.2 Fatigue crack growth in Mg alloys
1.6.2.1 Near threshold region fatigue crack growth behavior p.1-8
1.6.2.2 Fatigue crack growth behavior in region II p.1-8
1.6.2.2 Fatigue crack growth behavior in near final fracture (region III) p.1-9
1.7 Scope of the work p.1-10
1.8 Dissertation outline p.1-11
References p.1-12
Chapter 2. Literature review
2.1 Effect of second phase particle and defect on fatigue behavior p.2-1
2.2 Research Backgrounds on Chaos Synchronization p.2-4
2.3 Effect of corrosive humidity on fatigue behavior p.2-7
2.4 Effect of corrosive environment on fatigue behavior p.2-10
2.5 Effect of coating layer on corrosion fatigue behavior p.2-15
References p.2-19
Chapter 3. Influence of Mn content for corrosion resistance on fatigue behavior
3.1 Introduction p.3-1
3.2 Experimental procedures
3.2.1 Materials p.3-2
3.2.2 Intermetallic particle size measurement p.3-3
3.2.3 Tensile and hardness tests p.3-4
3.2.4 Fatigue test p.3-4
3.3 Results and Discussion
3.3.1 Intermetallic particle size p.3-4
3.3.2 Mechanical properties p.3-7
3.3.3 Fatigue life p.3-8
3.3.4 Fractography p.3-9
3.3.5 Fracture mechanics life prediction p.3-10
3.4 Conclusions p.3-12
References p.3-13
Chapter 4. Effect of anodized layer thickness on fatigue behavior under ambient environment
4.1 Introduction p.4-1
4.2 Experimental procedures
4.2.1 Materials p.4-2
4.2.2 Fatigue strength test p.4-4
4.2.3 Interrupted fatigue test p.4-4
4.3 Results and Discussion
4.3.1 The S-N curves p.4-5
4.3.2 Fractographic observations p.4-6
4.3.3 Interrupted fatigue test p.4-9
4.3.4 Stress intensity factor calculation p.4-11
4.4 Conclusions p.4-15
References p.4-16
Chapter 5. Effect of anodized layer on fatigue behavior under humid environment
5.1 Introduction p.5-1
5.2 Experimental procedures
5.2.1 Specimen p.5-2
5.2.2 Fatigue strength test p.5-3
5.3 Results and discussion
5.3.1 S-N curve p.5-5
5.3.2 Fractographic observations p.5-6
5.3.3 Influence of humidity on fatigue life p.5-11
5.4 Conclusions p.5-15
References p.5-16
Chapter 6. Effect of shot blasting on fatigue behavior under 5% NaCl environment
6.1 Introduction p.6-1
6.2 Experimental procedures
6.2.1 Material p.6-1
6.2.2 Fatigue test specimen p.6-2
6.2.3 Microstructure p.6-2
6.2.4 Fatigue strength test p.6-3
6.2.5 Fatigue crack growth tests p.6-4
6.3 Results and discussion
6.3.1 S-N curves p.6-4
6.3.2 Fractographs p.6-4
6.3.3 The two step fatigue test p.6-9
6.3.4 Fatigue crack growth tests p.6-9
6.2.5 Fracture mechanics approach p.6-11
6.4 Conclusions p.6-11
References p.6-12
Chapter 7. Effect of chemical conversion coatings on fatigue behavior under corrosive environments
7.1 Introduction p.7-1
7.2 Experimental procedures
7.2.1 Specimen p.7-1
7.2.2 Fatigue strength test p.7-4
7.3 Result and discussion
7.3.1 S-N curve p.7-4
7.3.2 Fractgraphic observations p.7-5
7.3.3 Fatigue crack growth test p.7-8
7.3.4 Fracture mechanics approach p.7-8
7.4 Conclusions p.7-10
References p.7-11
Chapter 8. Effect of painting layer on fatigue behavior under humid environment
8.1 Introduction p.8-1
8.2 Experimental procedures
8.2.1 Material p.8-1
8.2.2 Fatigue strength test p.8-3
8.3 Result and discussion
8.3.1 S-N curve p.8-3
8.3.2 Fractgraphic observations p.8-5
8.4 Conclusions p.8-8
References p.8-8
Chapter 9. Concluding remarks and suggestions for future work
9.1 Summery p.9-1
9.2 Suggestions for future work p.9-2
It is well known that magnesium alloys are alternatives to steels and aluminum alloys to reduce the weight of structures or machines. Fracture and fatigue behavior of magnesium alloys should be well understood for safety and reliability design. Magnesium alloys are also known as a poor corrosion resistant material. Therefore, it is important to make clear the fatigue behavior of magnesium alloys under corrosive environment. In the present study, characteristics of fatigue behavior of magnesium alloys under ambient and corrosive environments have been investigated in details.
Chapter 1 Introduction: Progressive research works have been carried out to understand the basic fatigue and fracture mechanisms of various Mg alloys. In this chapter basic fatigue mechanism is reviewed and scope of present work is stated in details.
Chapter 2 Literature review: Literature reviews on the topics which are closely related to the present research are presented.
Chapter 3 Influence of Mn content for corrosion resistance on fatigue behavior: Effect of manganese addition, which has been known to improve formability during extrusion and corrosion resistance, on mechanical properties and fatigue strength was investigated to confirm the total performance of the Mn addition to the magnesium alloys. The fatigue life increased with increasing Mn content and attained a constant value similar to the case of tensile strength. However, the fatigue life was significantly reduced at the Mn contents higher than 0.79wt%.
Chapter 4 Effect of anodized layer thickness on fatigue behavior under ambient environment: Effect of anodized layer thickness on fatigue behavior of AM60 magnesium alloy was investigated using three different anodized layer thicknesses of 15, 5 and 1 ?m. As the thickness of anodized layer was reduced from 15 ?m to 5 ?m to 1 ?m, interface roughness was tended to be diminished. The role of interface roughness was reflected in the fatigue strength, where the specimen with the smoothest interface, 1 ?m thick anodized specimen, showed the highest fatigue strength.
Chapter 5 Effect of anodized layer on fatigue behavior under humid environment: Two different humid environments were chosen to clarify the role of humidity (20oC, 50%RH and 50oC, 80% RH) on fatigue life of unanodized and three types of anodized specimens. Plane fatigue test showed a marked reduction in fatigue strength for unanodized specimens under high humidity conditions (50oC, 80%RH). On the other hand all groups of anodized specimens showed same fatigue strength irrespective of the level of humidity. Unanodized specimen showed corrosion pit formation and crack propagation from the pit under high humidity while anodized specimen showed no change of fatigue method or mechanism regardless of humidity level.
Chapter 6 Effect of shot-blast on fatigue behavior under 5% NaCl environment: Four-point-bend tests were conducted in low humidity (20oC, 55%RH), high humidity (50oC, 80%RH) and NaCl environment and the observed degradation of fatigue life was discussed in terms of stress concentration due to localized corrosive attack. It was found that shot-blast was effective to improve corrosion fatigue strength.
Chapter 7 Effect of chemical conversion coating on fatigue behavior under corrosive environments: Fatigue tests have been conducted on various types of coated AM60 alloy under three different types of environments.The chemical conversation coating showed excellent improvement of fatigue strength under corrosive environment, which was almost equal to that of base specimen without coating under low humidity
Chapter 8 Effect of painting layer on fatigue behavior under humid environment: Fatigue tests of anodized specimens with and without painting were carried out under high humidity. When without painting, thicker anodized layer contributed better fatigue strength, which was the opposite tendency to the case of with painting.
Chapter 9 Concluding remarks and suggestions for future work: The results obtained from the present investigation have been summarized.Suggestions for future works have been also given.
本論文は、「Fatigue behavior of magnesium alloys under ambient and corrosive environments(マグネシウム合金の通常及び腐食環境下の疲労挙動)」と題し、9章より構成されている。
第1章「緒論」では、マグネシウム合金の基本的疲労挙動および腐食疲労に関する従来の研究の概要を示すとともに、本研究の目的と範囲を述べている。
第2章「研究の現状展望」では、本研究に密接な関連のある文献の詳細な解析と問題点など明らかにし、腐食環境下でのマグネシウムの疲労研究を展望している。
第3章「マグネシウム合金の疲労挙動に及ぼすMn含有量の影響」では、耐食性と加工性向上のために添加されるMn含有量の機械的性質および疲労特性に及ぼす影響を調べ、Mn含有量の増加は疲労許度も向上させるが、含有量が約0.8%を超えると、介在物の析出により疲労強度は低下することなどを明らかにしている。
第4章「通常環境下での疲労挙動に及ぼす陽極酸化膜厚さの影響」では、耐食ならびに塗装の下地として用いられる陽極酸化膜が疲労強度に及ぼす影響を調べ、膜厚が厚くなると疲労強度は顕著に低下すること、厚さが5μm以下になると、膜を表面欠陥と仮定した破壊力学的検討結果から、微小欠陥の領域に入っており、疲労強度の低下は顕著でなくなること、などを明らかにしている。
第5章「高湿度下における疲労挙動に及ぼす陽極酸化膜の影響」では、陽極酸化膜のない試験片では、高湿度下で顕著な疲労強度の低下が認められるが、陽極酸化膜に塗装のある場合には、疲労強度の低下は認められないこと、陽極酸化膜のない場合には、腐食ピットが破壊起点となっているのに対し、陽極酸化膜のある場合には、腐食ピットの生成は認められないこと、などを明らかにしている。
第6章「5%NaCl下における疲労強度に及ぼすショットブラストの影響」では、ショットブラスト処理により疲労強度が改善されることなどを明らかにしている。
第7章「腐食環境下の疲労挙動に及ぼす化成皮膜の影響」では、化成皮膜は均一で十分薄く、通常環境下でも疲労強度の低下はごくわずかであること、腐食環境下でも、疲労強度の低下はほとんどなく、通常環境下の疲労強度と同等の強度を示すことなどを明らかにしている。
第8章「高湿度下での疲労挙動に及ぼす塗装膜の影響」では、塗装がない場合の高湿度下の疲労強度は、第5章の結果とは逆に、陽極酸化膜の厚い方が、疲労強度が高いことなどを明らかにしている。
第9章「結論」では、本論文で得られた結果を要約するとともに、本論文に基づき、今後の展開についても論じている。
よって、本論文は工学上及び工業上貢献するところが大きく、博士(工学)の学位論文として十分な価値を有するものと認める。