Highly Repetitive Pulse Discharge for Excimer Laser Excitation in Supersonic Flow(超音速流中におけるエキシマレーザー励起用高繰り返しパルス放電)
氏名 Tran Thanh Son
学位の種類 博士(工学)
学位記番号 博甲第438号
学位授与の日付 平成19年8月31日
学位論文題目 Highly Repetitive Pulse Discharge for Excimer Laser Excitation in Supersonic Flow (超音速流中におけるエキシマレーザー励起用高繰り返しパルス放電)
論文審査委員
主査 教授 増田 渉
副査 教授 門脇 敏
副査 教授 江 偉華
副査 准教授 鈴木正太郎
副査 長岡技術科学大学名誉教授 八井 浄
[平成19(2007)年度博士論文題名一覧] [博士論文題名一覧]に戻る.
Chapter 1. Introduction p.1
1.1 Fundamental of excimer laser p.1
1.2 Applications of excimer laser p.3
1.3 Requirements of high repetition rate rate and high average power p.5
1.3.1 High repetition rate requirements p.5
1.3.2 High average rate requirements p.6
1.4 Propose of this study p.6
Chapter 2. Experimental System p.8
2.1 Flow Generator p.8
2.1.1 Ludwieg tube and supersonic nozzle p.8
2.1.2 Test section p.10
2.1.3 Pressure measurement p.11
2.2 Electric circuit for pulse discharge p.11
2.2.1 Electric discharge circuit p.11
2.2.2 Voltage and current measurement p.13
2.2.3 Synchronization between flow and discharge p.13
2.3 Optical system for shadowgraph p.14
Chapter 3. Effects of Electrode Profile and Flow Channel Configuration p.18
3.1 Electrode Profile p.18
3.2 Improvement of Flow Channel Configuration p.25
3.2.1 Aerodynsmics of flow wiithout electrodes p.25
3.2.2 Flow channel configurations p.29
3.2.2.1 Open electrode configuration p.29
3.2.2.2 Covered electrode configuration p.32
3.2.2.3 Partly covered electode configuration p.32
3.2.2.4 Widened downstream channel configuration p.35
3.2.2.5 Improvement of fabrication of flow channel p.39
3.3 Conclusions p.45
Chapter 4. Double-Pulse Discharge in Supersinic flow p.46
4.1 Characteristics of double-pulse discharge circuit p.46
4.1.1 Discharge in still gas p.46
4.1.2 Discharge in supersonic flow p.47
4.1.3 Conclusions p.51
4.2 Double-pulse in discharge in supersonic flow p.55
4.3 Prediction of maximum repetition rate p.64
4.4 Conclusions p.67
Chapter 5. Overall Conclusions p.68
A Ludwieg tube p.70
A.1 Principle p.70
A.2 Gas condition in the test section p.70
B Two dimensional shock-free nozzle p.73
B.1 Method of characteristics p.73
B.2 Two-dimensional chock-free nozzle design p.74
B.3 Boundarly layer calculation p.78
Reference p.86
Development of a high-repetition-rate excimer laser is a vital requirement for providing a high average power and a high throughput for numerous applications. In an excimer system, fluid dynamics techniques associated with electrical excitation are indispensable for achieving a high repetition rate and a high average power, and for maintaining a good medium homogeneity in a discharge volume. In this study, a supersonic flow with a Mach number of 2.0, generated by a Ludwieg tube and a two-dimensional shock-free nozzle, is used to rapidly replenish the laser gas in the discharge cavity in order to obtain a highly repetitive rate, and a double-pulse discharge method using solid electrodes and automatic ultraviolet preionization pins is applied to simulate a high-repetition-rate excimer laser.
Investigation of the electrode profile and flow channel is done by single pulse discharges to find out the suitable structure for a discharge in a supersonic flow. It is clearly demonstrated in this study that the discharge stability strongly depends on both the electrode profile and flow channel configuration. Two types of electrode profile, flat- and curved-top electrodes, have been evaluated by the light emissions from the discharge in still gas using the direct photographs and a simulation of electric field distribution.
The electrodes with curved tops, which have more uniform electric field distribution in the discharge cavity producing a stable wide glow discharge in still gas, have been chosen to use in this study. Some flow channel configuration chosen from the electric and aerodynamic viewpoints are used to evaluate the effects of the flow channel configuration on the discharge stability. Within the scope of this investigation, the use of curved-top electrodes in a channel configuration with an upstream cover and a downstream channel widened by 2 mm is the most suitable structure for the excitation discharge preionized by ultraviolet pin spark in a supersonic flow. A double-pulse discharge using above structure is performed in a supersonic flow, and electric characteristics and flow phenomena are observed. An equivalent repetition rate f for the stable glow discharge of as high as 17 kHz is achieved with discharge width of 14 mm (FWHM). A glow discharge is also obtained between the electrodes in the second pulse at f = 20 kHz; however, a discharge between the cathode and the UV pins appears almost simultaneously.
At f ? 25 kHz, the second discharge becomes an arc through the heated column produced by the former discharge or downstream of the shock wave SW #u moving upstream from the heated column. It is clearly demonstrated in this study that the effects of the heated column remain for a very short time (< 17 s in this study) owing to the rapid removal from the discharge opening by a supersonic flow, and the shock wave SW #u is the main factor that limits the high-repetition-rate operation of an excimer laser. It is noted that SW #u hardly affects the discharge stability in a low-speed subsonic flow owing to its removal upstream rapidly. Based on the experimental results, a formula for estimating the maximum repetition rate in a supersonic flow is proposed.
本論文は「Highly Repetitive Pulse Discharge for Excimer Laser Excitation in Supersonic Flow(超音速流中におけるエキシマレーザー励起用高繰返しパルス放電)」と題し、全5章から構成されており、その目的は、エキシマレーザ励起放電の高繰り返し化のために放電部のレーザガスを超音速で流し、放電の安定化を流路形状の改善によって行うとともに、ダブルパルス放電回路を用いて高繰り返し放電現象の観察と最大可能な高繰り返し周波数を評価することにある。
第1章「Introduction」では、エキシマレーザの原理、応用を概説し、励起放電の高繰返し化のためにレーザガスを超音速で流すことの有用性と本研究の目的を述べた。
第2章「Experimental System」では、超音速流れ発生に用いルートビーク管と超音速ノズル、電極、電源などの実験装置、実験方法、および実験条件について説明した。
第3章「Effects of Electrode Profile and Flow Channel Configuration」では、静止気体中において放電状態の電極形状への依存性を調査し、選択した電極形状を用いてマッハ数2の超音速流れ中での単発放電の特性を詳細に観察するとともに、流路形状を改善し流れの一様性を高めることにより安定なグロー放電が得られることを明らかにした。
第4章「Double-Pulse Discharge in Supersonic Flow」では、前章で得られた流路形状を用い、ダブルパルス放電を行い、放電間隔Td(等価繰返し周波数f=1/Td)をパラメータとし最初のグロー放電が2番目の放電に及ぼす影響を観察した。その結果、最初の放電による被加熱領域が電極開口部に存在するTd<17μsでは、亜音速流れの場合と同様に、2番目の放電は被加熱部を通過するアークとなった。さらに、超音速流れを用いた本実験では、被加熱部が開口部から除去されても、被加熱部から発生する衝撃波が開口部に存在するTd<59μsにおいては2番目の放電は安定ではなく、安定な放電を得るには衝撃波が開口部から排除されるTd>59μsが必要であることが明らかにされた。以上の観察結果より、超音速流中での放電状態は被加熱部から発生する衝撃波の影響がきわめて重要であることが判明し、これに基づいて超音速流を用いた場合の高繰り返し放電周波数についての予測式を提案した。
第5章「Overall Conclusion」では、本論文で得られた結果と考察を要約した。
以上の内容より、本論文は工学上および工業上貢献するところが大きく、博士(工学)の学位論文として十分な価値を有するものと認める。