Studies on transcriptional regulation of cellulase and xylanase genes in the filamentous fungus Trichoderma reesei (糸状菌Trichoderma reeseiにおけるセルラーゼ・キシラナーゼ遺伝子群の転写制御に関する研究)
氏名 古川 隆紀
学位の種類 博士(工学)
学位記番号 博甲第515号
学位授与の日付 平成21年6月30日
学位論文題目 Studies on transcriptional regulation of cellulase and xylanase genes in the filamentous fungus Trichoderma reesei (糸状菌Trichoderma reeseiにおけるセルラーゼ・キシラナーゼ遺伝子群の転写制御に関する研究)
論文審査委員
主査 准教授 岡田 宏文
副査 准教授 政い 英司
副査 准教授 高橋 祥司
副査 特任教授 森川 康
副査 産学融合特任准教授 小笠原 渉
[平成21(2009)年度博士論文題名一覧] [博士論文題名一覧]に戻る.
CONTENTS
PREFACE p.1
CONTENTS p.3
CHAPTER1
GENERAL INTODUCTION p.7
1.1 Background p.7
1.2 Plnat cell wall polysaccharides and lignin p.9
1.3 Enzymatic degradation of cellulose and hemicellulose p.11
1.4 Celluloytic filamentous fungus Trichoderma reesei p.13
1.5 Regulation of the produciton of cellulases and hemicellulases in T.reesei p.17
1.5.1 Expression of cellulase genes p.17
1.5.2 Expression of xylanase genes p.18
1.5.3 Expression of other hemicellulase genes p.19
1.6 Regulation of hemicellulase and cellulase genes in Aspergillus species p.20
1.7 Transcriptional regulators involved in the regulation of cellulolytic and xylanolytix gene expression in filamentous fungi p.21
1.7.1 XlnR p.22
1.7.2 Xyrl(Xylanase regulator 1) p.24
1.7.3 ACEI(Activator of cellulase Expression I) p.25
1.7.4 ACEII(Activator of Cellulase Expression II) p.26
1.7.5 CREA/CREI p.27
1.7.6 The CCAAT sequence binding complex p.29
1.8 Transcriptional regulation of cellulase and xylanase genes expression in T.reesei p.31
1.8.1 Regulatory elements involved in the cellobiohydrolase I (cbh1) gene expression p.32
1.8.2 Regulatory elements involved in the cellobiohydrolase II (cbh2) gene expression p.33
1.8.3 Regulatory elements involved in the xylanase I (xyn1) gene expression p.34
1.8.4 Regulatory elements involved in the xylanase II (xyn2) gene expression p.36
1.9 Aims of this study p.38
1.10 REFERENCES p.39
CHAPTER2
Identification of the cis-acting elements involved in regulation of xylanae III gene expression in Trichoderma reesei PC-3-7 p.53
2.1 INTRODUCTION p.53
2.2 MATERIALS AND METHODS p.55
2.3 RESULTS p.64
2.3.1 Identification of functional regions involved in transcriptional regulation of xyn3 p.64
2.3.2 Tow possible Xyr1-binding sequences are essential for induction of xyn3 expression p.67
2.3.3 Involvement of Xyr1 in the regulation of xyn3 expression p.69
2.4 DISCUSSION p.71
2.5 REFERENCES p.75
CHAPTER3
Identification of specific binding sites for Xyr1, a transcriptional activator cellulolytic and xylanolytic genes in Trichoderma reesei p.79
3.1 INTRODUCTION p.79
3.2 MATERIALS AND METHODS p.80
3.3 RESULTS p.84
3.3.1 Dnase I footprinting analysis of Xyr1 binding within the xyn3 promoter region p.84
3.3.2 Identification of cellulolytic and xylanolytic genes under the control Xyr1 p.86
3.3.3 In silico analysis of the 5'-upstream region of Xyr1-regulated genes p.88
3.3.4 In vitro binding analysis of Xyr1 to the 5'-GGC(A/T)3-3' motifs p.93
3.3.5 Characterization of the binding specificity of Xyr1 p.98
3.4 DISCUSSION p.101
3.5 REFERENCES p.105
CHAPTER4
GENERAL CONCLUSION p.109
LIST OF PUBLICATIONS
The filamentous fungus Trichoderma reesei is one of the most efficient producers of cellulolytic and xylanolytic enzymes and its hydrolytic enzyme system has been subjected to extensive biochemical and genetic analysis. Over the past decade, numerous attempts have been made by many researchers to elucidate the transcriptional regulation of cellulase and xylanase genes in T. reesei. However, detailed molecular mechanisms governing these genes expression have only been investigated for a limited number of cellulase and xylanase genes. Furthermore, relatively little information is available concerning actual roles of the transcription factors and their physiological binding sequences. Understanding of the molecular mechanisms regulating cellulase and xylanase genes expression in T. reesei will serve as a basis to develop useful strains exhibiting strong cellulose degrading activity, expressing tailor-made enzyme cocktails needed in several industrial applications. Therefore, the identification of cis-acting elements and the characterization of trans-acting factors involved in this regulatory circuit are very important step for developing useful industrial strains of T. reesei. In this thesis the author aimed to gain new insight into the molecular mechanisms regulating cellulase and xylanase genes expression in T. reesei.
Chapter 1 describes the background of this research and the transcriptional regulation mechanisms of cellulase and xylanase genes expression in filamentous fungi, and mentions the significance of this study.
Chapter 2 describes the identification of the cis-acting elements involved in the regulation of the xylanae III gene expression in T. reesei PC-3-7. The xylanase III gene (xyn3 ) from T. reesei PC-3-7 is only induced by cellulose, its derivatives and L-sorbose, but not by xylan, and exhibiting coordinate expression with cellulase genes. In this chapter, the author defined three cis-acting elements within the xyn3 upstream region by using detailed deletion and mutation analysis. In addition to the Xyr1/ACEII-binding motif (5’-GGCTAA-3’), the analogous motifs 5’-GGCTAT-3’ and 5’-GGCAAA-3’ presented as an inverted repeat spaced by 16-bp internal sequences were identified as essential elements for xyn3 expression. Electrophoretic mobility shift assay using heterologously expressed Xyr1 demonstrated that all the identified cis-acting elements are able to interact with Xyr1. Furthermore, no xyn3 transcripts were formed in the xyr1-knockout strain upon induction by sophorose and L-sorbose. These results indicate that xyn3 expression is transcriptionally regulated by Xyr1, and suggest that the 5’-GGCTAT-3’ and 5’-GGCAAA-3’ motifs play roles in Xyr1-mediated cellulase and xylanase gene expression in T. reesei.
Chapter 3 describes identification of specific binding sites for a transcriptional activator Xyr1. The transcriptional activator Xyr1 is the central regulator that governs cellulolytic and xylanolytic gene expression in T. reesei. However, despite its biological importance, relatively little is known about its functional binding sequences. In this chapter, the author investigated the binding characteristics and specific targets for Xyr1 by using DNase I footprinting analysis and electrophoretic mobility shift assays. The author demonstrated that Xyr1 can interact not only with the 5’-GGCTAA-3’ motif but also with several 5’-GGC(A/T)3-3’ motifs. In silico analysis revealed that the 5’-GGC(A/T)3-3’ motifs are widespread as single site in the 1.5-kbp of 5’-upstream regions of all the Xyr1-regulated genes. Furthermore, the author defined the important nucleotides within the binding site that contribute to specific interaction with Xyr1. These results suggest that, together with the inverted repeat motifs, the single 5’-GGC(A/T)4-3’ motifs play important roles as functional Xyr1-binding sites in the regulation of cellulase and xylanase gene expression in T. reesei.
Finally, the results presented in this thesis are summarized and discussed in chapter 4.
本論文は、「Studies on transcriptional regulation of cellulase and xylanase genes in the filamentous fungus Trichoderma reesei (糸状菌Trichoderma reesei におけるセルラーゼ・キシラナーゼ遺伝子群の転写制御に関する研究)」と題し、以下に示す4章より構成されている。
第一章では研究の背景および糸状菌におけるセルラーゼ・キシラナーゼ遺伝子の転写制御に関するこれまでの知見をまとめ、本研究を行う意義を明確にしている。
第二章ではセルラーゼ遺伝子群と発現挙動を共にするキシラナーゼIII遺伝子(xyn3 )の上流領域(約1.1 kbp)の解析を行い、xyn3 の誘導発現が二つの新規な配列を含む三つの転写活性化配列(5’-GGCTAA-3’,5’-GGCTAT-N16-TTTGCC-3’) によって制御されていることを明らかにしている。またゲルシフト解析により、転写活性化因子Xyr1 が同定された全ての活性化配列と相互作用することを証明している。Xyr1 の結合配列はこれまで5’-GGCTAA -N10-TTAGCC-3’というGGCTAAモチーフの逆向き反復配列とされてきたが、本論文によってN数の異なる反復配列や単独で存在するGGCTAA モチーフ、あるいは揺らぎを有するGGCTAAモチーフ様配列にもXyr1 が結合可能であることが示された。最終的に上流領域の解析結果とxyr1 破壊株におけるxyn3発現解析の結果を総合的に考察し、これまで不明であったxyn3の発現制御モデルを明確に提示している。
第三章では、第二章にて得られたXyr1結合配列に関する新たな知見に基づき、生体内で機能的なXyr1 結合配列は5’-GGC(A/T)3-3’モチーフであるという仮説を提唱している。この仮説を証明するために、Xyr1 の制御下にある全てのセルラーゼおよびキシラナーゼ遺伝子を同定し、その上流領域における5’-GGC(A/T)3-3’ モチーフの存在をバイオインフォマティクス的手法を用いて解析を行っている。また様々な5’-GGC(A/T)3-3’モチーフに対するXyr1 の結合特異性を特定し、Xyr1 結合配には比較的広い揺らぎが存在していることを明らかにしている。さらにXyr1 の結合配列認識に重要な塩基の同定を行い、最終的にXyr1 の結合共通配列は単独で存在する5’-GGC(A/T)4-3’モチーフであると結論づけている。本研究によりこれまでほとんど知見のなかったXyr1 の結合コンセンサス配列が決定され、Xyr1を中心としたセルラーゼ・キシラナーゼ遺伝子群の誘導発現機構の全体像を理解することが可能となった。
第四章では本研究で得られた一連の研究成果について総括するとともに、セルラーゼ・キシラナーゼ遺伝子群の転写制御機構を解明するための展望について述べている。
T. reesei はセルロース系バイオマスの工業的な酵素糖化に必須な微生物であることから、そのセルラーゼ・キシラナーゼ生産制御機構に関する研究は工学上および工業上貢献するところが大きく、本論文は博士(工学)の学位論文として十分な価値を有するものと認める。