Electrode Activity of a Solid‐Oxide‐Fuel‐Cell Anode Consisting of Nickel Alloy, Cerium Oxide, and Titanium Oxide for the Direct Oxidation of Methane(ニッケル合金・セリウム酸化物・チタン酸化物で構成する燃料極のメタン直接酸化に対する電極活性)
氏名 TANAWAT KANJANABOONMALERT
学位の種類 博士(工学)
学位記番号 博甲第531号
学位授与の日付 平成22年3月25日
学位論文題目 Electrode Activity of a Solid‐Oxide‐Fuel‐Cell Anode Consisting of Nickel Alloy, Cerium Oxide, and Titanium Oxide for the Direct Oxidation of Methane (ニッケル合金・セリウム酸化物・チタン酸化物で構成する燃料極のメタン直接酸化に対する電極活性)
論文審査委員
主査 教授 佐藤 一則
副査 教授 梅田 実
副査 准教授 松原 浩
副査 准教授 斉藤 信雄
副査 特任教授 井上 泰宣
[平成21(2009)年度博士論文題名一覧] [博士論文題名一覧]に戻る.
Contents p.i
List of Figures p.v
List of Tables
Chapter 1 Overviews p.1
1.1 Introduction p.2
1.2 Fuel Cells p.3
1.3 Type of Fuel Cells p.4
1.4 Solid Oxide Fuel Cells(SOFCs) p.7
1.5 SOFC components p.9
1.6 Fuel cell application p.11
1.7 Background reviews p.11
1.8 Scope of this dissertation p.15
References p.17
Chapter 2 General background and Theory p.19
2.1 Introduction
2.2 Sol-gel method for anode material preparation p.20
2.3 A single SOFC configuration and fabrication p.21
2.4 Cell performance testing setup p.23
2.5 Electrical conductivity measurement p.25
2.6 Electrode polarization p.25
References p.29
Chapter 3 Synthesis and characterization of mixed ionic and electronic conductivity (MIEC)(CeO2)-(TiO2)mixed oxide p.30
3.1 Introduction p.31
3.2 experimental p.33
3.2.1 Preparation of (CeO2)1-x-(TiO2)x p.33
3.2.2 Structural characterization p.33
3.2.3 Conductivity measurement p.34
3.3 Results and Discussion p.37
3.3.1 Phase identification p.37
3.3.2 Microstructure characterization p.40
3.3.3 Electrical conductivity of (CeO2)1-x-(TiO2)x p.43
3.4 Introduction p.46
References p.47
Chapter 4 Electrode activity of a SOFC anode consisting of Nikel-alloy, cerium oxide and titanium oxide for the oxidation of methane p.49
4.1 Introduction p.50
4.2 Experiments p.52
4.2.1 Cell fabrication p.52
4.2.2 The electrode activity test p.54
4.2.3 AC Impedance analysis p.54
4.2.4 Gas production analysis p.55
4.3 Results and Discussion p.55
4.3.1 Effect of cermet on cell performance p.55
4.3.2 Effect on cell polarization p.60
4.3.3 Microstructure characterization p.63
4.3.4 Gas production rate from the oxidation of methane p.67
4.3.5 The interfacial resistance between anode and electrolyte p.71
4.3.6 Effect of Nickel and Nickel-alloy cermet anode on cell performance p.72
4.4 Conclusion p.75
References p.76
Chapter 5 Effect of electrolytes on the direct oxidation of methane and The long-term stability of Ni cermet anode p.77
5.1 Introduction p.78
5.2 Experiments p.80
5.2.1 Cell fabrication p.80
5.2.2 Performance test p.82
5.2.3 Cell performance vs. Time p.82
5.3 Results and discussion p.83
5.3.1 Effect of electrolyte on cell performance p.83
5.3.2 Impedance analysis p.86
5.3.3 Gas production rate from the oxidation of methane p.86
5.3.4 long term operation p.89
5.4 Conclusion p.97
References p.98
Chapter 6 Summary p.99
Acknowledgements p.105
List of Jounal papers p.107
List of Proceedings p.108
List of International Conferences p.109
Curriculum Vitae p.110
The binary-oxide system, CeO2-TiO2, which was previously studied as a support for nickel-metal catalysts in the partial oxidation of methane (POM), has been investigated for an enhancement of the electrochemical oxidation of methane in solid oxide fuel cells (SOFCs). Since the cermet anode requires a gas-permeable porous structure, a sol-gel method was selected to prepare mixed oxide powders in order to form fine cermet-grains instead of using the conventional solid-state method. In the present work, a novel cermet anode, consisting of nickel metals and cerium-titanium mixed oxide (CeO2-TiO2) has been developed for SOFCs operating at intermediate temperatures (600-800°C), and the electrode activity for the direct oxidation of methane was evaluated. The content of the present dissertation are as follows.
In chapter 1, the introduction, component and application about the fuel cells, especially a solid oxide fuel cell (SOFC) have been provided. The background reviews on using doped ceria as a catalyst support for the oxidation of methane related to this dissertation have been addressed. The scope and objective of this dissertation have been addressed.
In chapter 2, the briefly cell fabrication and system setup for cell performance test have been provided. The fundamental of the electrical conductivity and the electrochemical performance characterizations, i.e. electrode polarization have been also provided.
In chapter 3, the (CeO2)1-x(TiO2)x mixed oxide powders (vary TiO2 content) were prepared by a sol-gel method. The phase identification and morphology of mixed oxides were characterized. The dc four-probe technique has been used to measure the electrical conductivity in the temperature range 600-800°C. The electrical conductivities of bulk specimens of (CeO2)1-x(TiO2)x mixed oxide have been investigated and compared to pure CeO2 under reducing (H2) and oxidizing (O2) atmospheres. The observed microstructure of the bulk samples revealed that the (CeO2)1-x(TiO2)x sintered bodies show the average grain size larger than that of the CeO2 sintered body.
In chapter 4, the electrode activity of Ni-cermet anode was evaluated using methane or hydrogen as a fuel. The effect of different cermet for Ni-based anodes has been investigated. The cell performance as a function of current density of a cell using (CeO2)1-x(TiO2)x, (x = 0.1‐0.3) mixed oxides as a cermet was compared to CeO2 and samarium doped ceria (SDC). The Ni-(CeO2)0.8(TiO2)0.2 cermet anode showed the highest maximum power density with 130 mW・cm-2 using 10 vol% CH4 diluted with argon as a fuel. This enhancement in the cell performance of the Ni-CeO2-TiO2 cermet is caused not only by the high electrical conductivity but by a decrease of the ohmic resistance as well. The interfacial resistance between the anode materials and the solid electrolyte has been investigated by the AC impedance method on the symmetric cell Ni-cermet//electrolyte//Ni-cermet under oxidizing atmosphere. Gas products from the direct oxidation of methane has been analysed by GC. The anode durability for long-term operation under CH4 fuel has been investigated. The initial maximum power density of the Ni/(CeO2)0.8(TiO2)0.2 cermet anode was higher than the Ni/CeO2 cermet anode as long as 10 h. After 12 h of cell operation, the performance of a cell using Ni/(CeO2)0.8(TiO2)0.2 cermet anode slightly decreased than in the Ni/CeO2 cermet anode. The decrease in cell performance is caused by the agglomeration of CeO2 particles resulting in a reduction of the triple-phase boundaries (TPB) on the anode microstructure. The effect of Ni-Co solid solution alloy on the cell performance has been studied. The maximum power density under 10 vol% CH4 diluted with argon at 700°C for cells using the four different cermet-anode decreased in the order of Ni0.5Co0.5/SDC > Ni/(CeO2)0.8(TiO2)0.2 > Ni/SDC.
In chapter 5, the effect of the electrolyte on the cell performance using Ni cermet anode for the direct oxidation of methane has been investigated. The gas production rates from samarium doped ceria (SDC, Ce0.8Sm0.2O1.9) and yttria-stabilized Zirconia (YSZ) electrolytes were observed in order to understand the influent of ceria-based electrolyte. The maximum power density of a cell using the SDC electrolyte is higher than that of the YSZ electrolyte. It is also compatible with ceria-based anode and suitable for operating at intermediate temperatures (600-800°C). H2 and CO were detected as gas products for the electrochemical oxidation of methane at the open circuit voltage (OCV) condition on a cell using SDC as the electrolyte. This result indicates that the surface of SDC could be reduced and release electrons in order to keep the electric neutrality of the SDC lattice. These electrons could initiate the oxygen reduction on the cathode materials to produce oxide ions followed by a transfer to the anode-electrolyte interface resulting in an oxidation of gas fuels in the anode compartment.
In chapter 6, the results reveal that the (CeO2)0.8(TiO2)0.2 mixed oxide is one of the promising materials for fabricating the cermet anode for the direct oxidation of methane in intermediate-temperature solid oxide fuel cells.
本論文は、”Electrode Activity of a Solid-Oxide-Fuel-Cell Anode Consisting of Nickel Alloy, Cerium Oxide, and Titanium Oxide for the Direct Oxidation of Methane” (ニッケル合金・セリウム酸化物・チタン酸化物で構成する燃料極のメタン直接酸化に対する電極活性) と題し、6章より構成されている。
第1章では、燃料電池に関する技術開発の歴史を述べた後、固体酸化物形燃料電池(SOFC)研究開発の重要性と燃料としてのメタンの有用性について述べている。これらの背景をふまえ、本論文の研究目的を述べている。
第2章では、SOFC性能評価で必要とする反応実験装置の概略およびいくつかの電気化学測定法の測定技術原理と解析方法について詳述し、本研究目的との関連を述べている。
第3章では、(CeO2)1-X(TiO2)X系の酸化物バルク試料をゾル-ゲル法により作成し、その結晶相同定および直流四端子法によるバルク体の電気伝導度の雰囲気依存性評価を行った。その結果、TiO2組成比が高まると焼結性向上と電気伝導度増大に至ることを見いだした。
第4章では、Ni-(CeO2)1-X(TiO2)Xサーメット燃料極と酸化サマリウムを添加した酸化セリウム(SDC)電解質を組み合わせた単セルを作製し、水素およびメタンに対する発電性能の評価を行った。その結果、Ni-(CeO2)0.8(TiO2)0.2サーメット燃料極が最も高い発生電力密度を示した。燃料極におけるメタンの電気化学的酸化反応活性を、開回路状態での交流インピーダンス測定結果に基づいて検討し、反応活性向上が燃料極粒子の接触性と電解質界面との良好な接合性によってもたらされることを示した。さらに、燃料極の微細組織を二次電子像により観察し、サーメット燃料極における金属ニッケル粒子の均一分散がセル性能向上に寄与することを明らかにした。
第5章では、直接メタン酸化における反応機構を発生電流密度に対する生成ガス組成分析によって検討した。Ni-(CeO2)1-X(TiO2)Xサーメット燃料極とSDC電解質を組み合わせた場合には、SDC電解質における電子伝導と酸化物イオン(O2-)伝導の混合伝導性によって電圧損失が起こるが、メタンに対する発電性能としては同条件でのイットリア安定化ジルコニア(YSZ)電解質を用いたセルの性能を上回ることを示した。また、燃料極におけるメタン酸化反応では、電解質との界面における電荷移行反応が支配的であることを示した。さらに、長時間のセル性能安定性について検討し、Ni-(CeO2)1-X(TiO2)Xサーメット燃料極における金属ニッケル粒子の凝集成長と(CeO2)1-X(TiO2)X酸化物基質粒子の成長が発電性能に与える影響を具体的に明らかにした。
第6章では、メタン直接酸化に対する高活性燃料極の特性をまとめ、本研究で得た結果について総括を述べている。
以上のように本論文では、SOFCにおいてメタンに対する酸化反応活性化をもたらす反応機構について有用な知見を与えている。よって、本論文は、工学上および工業上貢献するところが大きく、博士(工学)の学位論文として十分な価値を有するものと認める。