Micro-simulation of Freight Agents in Supply Chain for Modeling Urban Freight Movement (サプライチェーンを考慮した都市内物流マイクロシミュレーションモデル)
氏名 Wisinee Wisetjindawat
学位の種類 博士(工学)
学位記番号 博甲第388号
学位授与の日付 平成18年8月31日
学位論文題目 Micro-simulation of Freight Agents in Supply Chain for Modeling Urban Freight Movement (サプライチェーンを考慮した都市内物流マイクロシミュレーションモデル)
論文審査委員
主査 助教授 佐野可寸志
副査 教授 松本 昌二
副査 教授 中出 文平
副査 助教授 樋口 秀
副査 京都大学大学院工学研究所 助教授 山田 忠史
[平成18(2006)年度博士論文題名一覧] [博士論文題名一覧]に戻る.
TABLE OF CONTENTS
CHAPTER 1:
INTRODUCTION p.1
1.1 Introduction p.1
1.2 Problem Statement p.2
1.3 Research Objectives p.3
1.4 Scope of Research p.3
1.5 Organization p.4
CHAPTER 2:
URBAN FREIGHT TRANSPOTATION:SOME FACTS p.7
2.1 Introduction p.7
2.2 Study Area p.7
2.3 Survey Data p.8
2.4 Classifications of Commodities and Industries p.9
2.5 Characteristics of Commodity Flows p.13
2.5.1 Supply Chain and Distribution Channel p.14
2.5.2 Delivery Lot Size p.16
2.5.3 Truck Routing p.17
2.6 Conclusion p.20
CHAPTER 3:
CONCEPTUAL FRAMEWORK p.21
3.1 Introduction p.21
3.2 Related Literatures p.21
3.2.1 Trip-Based Approach p.22
3.2.2 Commodity-Based Approach p.23
3.2.3 Micro-Simulation Model p.24
3.3 Overview of Conceptual Framework p.26
CHAPTER4:
COMMODITY GENERATION AND DISTRIBUTION WITH SPATIAL CORRELATIONS p.31
4.1 Introduction p.31
4.2 Related Literatures p.31
4.2.1 Freight Agents in Supply Chains p.32
4.2.2 Freight Agent Interactions p.33
4.2.3 Mixed Logit Model p.34
4.3 Model Formulations p.35
4.3.1 Micro-Simulation p.35
4.3.2 Commodity Generation p.36
4.3.3 Commodity Distribution p.37
4.4 Estimation Results p.46
4.4.1 Commodity Production and Consumption p.46
4.4.2 Commodity Distribution p.56
4.5 Model Validation p.78
4.6 Conclusion p.79
CHAPTER 5:
CONVERSION OF COMMODITY FLOWS TO TRUCK FLOWS AND TRAFFIC ASSIGNMENT p.81
5.1 Introduction p.81
5.2 Related Literatures p.81
5.2.1 Modal Choice Model p.81
5.2.2 Vehicle Inventory,Routing,and Scheduling p.82
5.3 Model Formulations p.83
5.3.1 Overall Model p.83
5.3.2 Delivery Lot Size and Frequency p.84
5.3.3 Carrier and Vehicle Choices p.85
5.3.4 Vehicle Routing p.91
5.4 Estimation Results p.93
5.4.1 Delivery Lot Size and Frequency p.93
5.4.2 Carrier and Vehicle Choices p.96
5.4.3 Vehicle Routing p.101
5.5 Validation Results p.103
5.6 Conclusion p.107
CHAPTER 6:
POLICIY EVALUATION p.109
6.1 Introduction p.109
6.2 Construction of New Ring Roads(Tokyo-Gaikan Expressway) p.110
6.3 Change in Fuel Price p.112
6.4 Comparison of the Evaluation Results among All Scenarios p.113
6.5 Conclusion p.114
CHAPTER 7:
DYNAMIC MULTI-AGENT SUPPLY CHAIN SIMULATION MODEL AND ITS APPLICATION p.115
7.1 Introduction p.115
7.2 Related Literatures p.115
7.3 Model Framework p.116
7.3.1 Sale Module p.118
7.3.2 Production Module p.118
7.3.3 Purchasing Decision Module p.119
7.3.4 Inventory Module p.120
7.3.5 Transportation Module p.122
7.3.6 Feedback Module p.125
7.4 Supply Chain Simulation p.125
7.4.1 Simulation Parameters p.126
7.4.2 Simulation Results p.129
7.5 Conclusion p.132
CHAPTER 8:
CONCLUSIONS AND RECOMMENDATIONS p.135
8.1 Conclusions p.135
8.2 Recommendations p.139
REFERENCES p.141
APPENDICES p.149
Urban freight transportation strongly affects to urban life quality and accessibility. Model of freight transportation system is a necessary tool for the transportation planners to access to the effects on the policy decision .However, most freight demand models available heretofore neglect the fundamental principle of freight movement, which says that the freight movement is an outcome of the interaction among freight agents to move commodities through supply chains.
The current direction of demand modeling is to model at the micro level for both freight demand modeling and passenger demand modeling. It is widely accepted that demand modeling at the micro level results in a more realistic and policy-sensitive model. Recently, urban freight movement models have been focused at the micro level. However, most models are too specific to some aspects of urban freight transportation such as truck routing and scheduling or fleet management and there are few comprehensive models that consider the interaction of freight agents and infrastructure network on the freight movement characteristics. The behavior of freight movement is basically similar to that of demand and supply in the market. For example, the commodity flows are the results of the interaction between demand and supply for purchasing and selling of the commodities. Likewise, congestion on a road network provides feed back to freight decision makers that might cause them to make changes in route choice, departure time, vehicle routing, lot size, frequency, and even in vehicle choice selection.
The objective of this study is therefore to develop a model that focuses on the behavioral level of freight transportation. The proposed model considers the individual behavior of freight agents and their interactions in supply chain resulting in the model's capability to reflect the real mechanism of freight movement. The proposed model is a modification of the traditional four-step approach in that it considers the behavior of each freight agent individually. The study utilizes micro-simulation as an approach to the modeling, considering the behavior of each firm individually. The model structure consists of four stages: commodity production and consumption, commodity distribution, conversion of commodity flows to truck flows, and traffic assignment.
Since the model considers the individual behavior of freight agent, the model can be applied to both static and dynamic of freight transportation system. Static model results the average number of truck trips of each origin and destination; on the other hand, dynamic model concerned the dynamic process of freight movement that varies according to trend in consumption. In addition, several phenomena in economic (such as bull-whip effect) and seasonal variation in freight traffic demand can be captured by the dynamic multi-agent freight model. The proposed model has been applied to analyze the urban freight transportation in the Tokyo Metropolitan Area. This study discusses the issues involved in model development and validation including conceptual framework, mathematical formulations, estimated results, and validation results. In addition, the model was also tested for its capability by applying to evaluate two proposed scenarios. The results show that the model is applicable to capture the responsive behaviors of freight agents that accompany the travel pattern changes.
本論文は,「Micro-simulation of Freight Agents in Supply Chain for Modeling Urban Freight Movement (サプライチェーンを考慮した都市内物流マイクロシミュレーションモデル) 」と題し,8章より構成されている.
第1章「INTRODUCTION」では,既存の貨物輸送需要予測モデルの持つ問題点について述べ,本研究の必要性と適用範囲を記述している.
第2章「URBAN FREIGHT TRANSPORTATION: SOME FACTS」では,既存物流調査データの分 析から,東京都市圏での物流実態の特徴を示している.
第3章「CONCEPTUAL FRAMEWORK」では,現在までに開発された都市内貨物輸送モデルのレビューと,本研究で開発したモデルのフレームワークを記述している.
第4章「COMMODITY GENERATION AND DISTRIBUTION WITH SPATIAL CORRELATIONS」では, 発生集中貨物量モデルと,空間相関を考慮した分布貨物量モデルの定式化を行っている.
同時に,パラメータの推計方法とその結果の統計的検定結果を示している.
第5章「CONVERSION OF COMMODITY FLOWS TO TRUCK FLOWS AND TRAFFIC ASSIGNMENT」では,貨物のフローから貨物車のフローへ変換する為に必要なロットサイズ・輸送頻度決定モデル,貨物車選択モデル,貨物車ルーティングモデルの定式化と推定を行っている.
第6章「POLICIY EVALUATION」では,第4章と第5章で構築した都市内物流に関するモデルを,東京都市圏に適用した結果を示している.ここでは施策の例として,環状道路の整備や燃料費の増大を取り上げ,物流活動に及ぼす影響を総走行交通量や総排出二酸化炭素量により評価している.
第7章「DYNAMIC MULTI-AGENT SUPPLY CHAIN SIMULATION MODEL AND ITS APPLICATION」では,動的なマルチエージェントのサプライチェーンシミュレーションモデルを提案し,その挙動を分析している.
第8章「CONCLUSIONS AND RECOMMENDATIONS」では,各章で示したモデルの特徴を概観し,今後の課題をまとめている.
以上のように,本論文は,都市内の物流活動を統合モデルにより表現することにより,新しい知見を与えている.よって,本論文は工学上及び工業上貢献するところが大きく,博士(工学)の学位論文として十分な価値を有するものと認める.